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Abstract 

  
The article investigates the hedging effectiveness of commodity futures when the 

correlations of spot and futures return series are subject to multi-state regime shifts. An 

independent switching dynamic conditional correlation GARCH (IS-DCC) which is free 

from the path-dependency and recombining problems is proposed to model multi-regime 

switching correlations. Results of hedging exercises show that in general, IS-DCC 

outperforms state-independent DCC GARCH and three-state IS-DCC exhibits superior 

hedging effectiveness when full sample period is applied, illustrating importance of 

modeling higher-state switching correlations for futures hedging.  
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I. Introduction 

It is widely known that when hedging a spot position with a position in the futures 

market, the minimum variance hedge ratio (MVHR) is equal to the ratio of the covariance 

of spot and futures returns to the variance of futures returns. A common approach to 

conditional minimum-variance hedging is to model the time-varying conditional 

variance-covariance matrix of returns using a multivariate GARCH model, and use 

forecasts from this model to construct a forecast of the conditional MVHR (Baillie and 

Myers, 1991; Kroner and Sultan, 1993; Park and Switzer, 1995; Gagnon and Lypny, 1995; 

Brooks et al., 2002; and Byström, 2003).  

Recent studies recognize that the relationship between spot and futures returns may 

be characterized by regime shifts (Sarno and Valente, 2000, 2005a, 2005b). The implication 

is that to improve the futures hedging effectiveness, the state-dependent property between 

spot and futures series should also be taken account in developing dynamic hedging strategies. 

Alizadeh and Nomikos (2004), Lee et al. (2006), Lee and Yoder (2007a), Lee and Yoder 

(2007b) and Alizadeh et al. (2008) respectively, propose regime switching least square 

model, regime switching state space model, regime switching Varying Correlation 

GARCH (VC-GARCH) model, regime switching BEKK-GARCH model and regime 

switching vector error correction model for futures hedging and find that the hedging 

effectiveness are improved compared to state-independent strategies. To further 

incorporate the effects of unanticipated news events in determining of optimal hedge ratio, 

Lee (2009a) develops a Markov regime switching Generalized Orthogonal GARCH 

model with conditional jump dynamics for estimating the optimal hedge ratio. Further 

extension is to release the assumption of joint normality between spot and futures return 
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series and using regime switching copula GARCH model for futures hedging (Lee, 

2009b). All these elaborations are found to improve futures hedging effectiveness.  

Although these regime switching GARCH models have captured much of the 

observed behavior in the spot and futures return series, they possess some limitations. 

Firstly, these models allow mean, volatility, and correlation equations to be state-

dependent simultaneously and as a consequence, discussion of the number of regimes is 

limited to two due to the potential problems of overparameterization and convergence for 

higher regimes. As pointed out by Caporin and Billio (2005), a full Markov switching 

model is highly unstable given the huge number of switching parameters. To the author’s 

knowledge, no multi-regime multivariate GARCH model has been applied for futures 

hedging. Secondly, all these models are subject to the well-known path-dependency 

problem, (Cai, 1994; Hamilton and Susmel, 1994; Gray, 1996; and Lee et al., 2007a, 

2007b). Recombining procedures are required to approximate the residuals, variances and 

correlation at each time point and these procedures inevitably create computational 

burden and as pointed out by Hass, et. al. (2004), the analytical tractability of the 

dynamic process is problematic.  

This study attempts to investigate if allowing the correlation of spot and futures 

return series to be subject to multi-state switching improves the futures hedging 

effectiveness by proposing an independent switching dynamic conditional correlation 

GARCH (IS-DCC) model. There are several reasons that we argue for an independent 

switching model for the correlation. Firstly, time-varying correlations risks are widely 

noticed in recent finance literature. For instance, Krishnan et al. (2009) find that the 

correlation of returns between assets has varied substantially over time and investors 
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would pay a premium for securities that perform well in regimes in which the correlation 

is high. Ang and Chen (2002) find that Correlations between U.S. stocks and the 

aggregate U.S. market are much greater for downside moves than for upside moves. 

Ledoit et al. (2003) find that the level of correlation for international stock markets 

depends on the phase of the business cycle. All these findings suggest a state-dependent 

time-varying correlation for modeling financial time series. Secondly, limiting the 

switching only for the correlation mitigates the problems of overparameterization and 

convergence and the discussion of regime switching effect on futures hedging with more 

than two states is possible. Lee et al. (2007a) model explicitly the state-dependent time-

varying correlation process. Their model, however, limits the number of states to two. 

Finally, the proposed IS-DCC avoids the problem of path-dependency and is free from 

the requirement of recombining procedure. This reduces the burden of computation and 

avoids the analytical intractability problem.  

The remainder of the article is organized as follows. The proposed IS-DCC is 

presented in section II. Section III addresses the estimation issue encountered for the IS-

DCC. The minimum variance hedge ratio under regime switching and measuring hedging 

performance are discussed in section IV. This is followed by data description and 

empirical results. A conclusion ends the article. 

 

II. Independent Switching Dynamic Conditional Correlation GARCH Model 

(IS-DCC)  

The independent switching dynamic conditional correlation GARCH (IS-DCC) is a 

modification of the Markov regime switching dynamic conditional correlation GARCH 
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(MS-DCC; Caporin and Billio, 2005) such that no problems of path-dependency will 

occur and recombining procedure is not required. The specification of IS-DCC is given 

below:  

Suppose that the observed 2 -dimensioned economic process  tR  is given by 

tt eμR  ,          (1) 

ttεDμ  ,          (2) 

where   T
fc μ  is a 12  vector of conditional means, “T ”  stands for transpose, 

  ttεDe  T
tftct ee ,,   is assumed to be normally distributed 

 tt He ,0~| 1 Nt ,       (3) 

with time-dependent variance-covariance matrix tH .  μRDε t  1
tt  is the normalized 

residual vector, N  stands for normal distribution and 1t  is the information set up to 

time 1t . The time-varying variance-covariance matrix tH  is given by  

tttt DΓDH  ,        (4) 

where  tihdiag ,tD ,  fci ,  is a diagonal matrix with the volatilities of spot and 

futures returns on the ith element. The conditional variances dynamic are assumed to 

follow a state-independent GARCH(1,1) process 

      2
ti

T
1t1tii

2
t DβdiageeαdiagγdiagD 1   ,    (5) 

where   is Hadamard product and iγ , iα , and iβ ,  fci ,  are GARCH coefficients.  

In the state-independent dynamic conditional correlation GARCH model (Engle, 

2002), tΓ  is the correlation matrix and is defined as   

    2/12/1  tttt QQQΓ diagdiag ,                            (6) 
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where tQ  is the conditional standardized residual covariance matrix and for a restrictive 

case, is given by  

  121211   t1t1tt QεεQQ  ,                           (7) 

where Q  is the unconditional covariance matrix of the standardized residuals and can be 

replaced by the sample covariance matrix 


 
T

iT 1

1
itit εεQ  to simplify the estimation 

(Bauwens, Laurent, and Rombouts, 2006).  

To incorporate regime shift into Engel’s DCC model, Caporin and Billio (2005) 

introduce a Markov regime switching dynamic conditional correlation (MS-DCC) model 

with the conditional standardized residual covariance matrix specified as  

         121211   t1t1tt QεεQQ tttt ssss  ,            (8) 

where  2,1ts  is the state variable following a first-order, two-state Markov process. 

Compared to equation (7), parameters driving the system dynamics are state-dependent. 

The regime dependent structure is restricted to the correlation excluding any effect on 

variance. As pointed out by Caporin and Billio (2005), a full Markov switching model is 

highly unstable given the huge number of switching parameters.  

 Given the joint presence of regime switching and time-varying correlation in each 

regime in equation (8), recombining procedure is required to solve the well-known path-

dependency problem (Cai, 1994; Hamilton and Susmel, 1994; Gray, 1996; and Lee et al., 

2007a and 2007b). Analog to Kim’s filter (1994), Caporin and Billio (2005) propose a 

modified Hamilton filter for estimating MS-DCC. In their proposed filtering algorithm, 

the conditional standardized residual covariance matrix iQ  evolves according to the 

following dynamic  
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  i
tjjjj

ji
t 1,2,1,2,1
, 1   QεεQQ 1t1t  ,            (9) 

given S  possible values of Q at time 1t , there will be 2S  possible values for Q  at 

time t ,  Sji ,,2,1,  , S  is the number of states. The recursive nature of the regime 

switching process produces an S -fold increase in the number of cases to consider in each 

iteration of the filter and make the model intractable. To make the evolution of the 

process tractable, the correlation matrixes are collapsed based on the following 

conditional expectations: 

 

 

 tt

S

i

ji
tttt

j
t jsP

isjsP





|

|,
1

,
1








 Q
Q ,               (10) 

where  ttt isjsP |, 1    is the conditional regime probability of being in state i  at 

time 1t  and in state j  at time t .  

 Although this recombining method solves the problem of estimation difficulties, it 

creates computational burden and its analytical intractability is a serious drawback. 

Consider the following correlation dynamic 

  121211   t1tt QEQQ  ,      (11) 

where 1t1t1t εεE   . If 12  , tQ  can be expressed as  

     i
i

i






  tt EQQ
1

1
21

1
221 11  ,     (12) 

where 1  reflects the magnitude of a unit shock’s immediate impact on the next period’s 

Q , 2  is a parameter of inertia and indicates the memory in Q , and the total impact of a 

unit shock to future Q  is   1
21 1  . In the regime switching GARCH model, the 

relationship between the pattern with which Q  responds to shocks and the parameters 1  
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and 2  is far from obvious if recombining method is used because the lagged Q  is 

replaced with the recombined variances. Moreover, it is possible that the covariance of 

one regime will still be affected by shocks even if 1  in that regime is zero. A more detail 

discussion of this problem is given in the appendix A.  

Analog to the independent switching idea proposed by Hass et al. (2004) that is 

aimed to solve the problem of univaraite path-dependency problem in the variance 

process, an independent switching covariance process is suggested below:  

             tttttttt ssssss 121211   QεεQQ 1t1t  ,   (13) 

and the corresponded correlation dynamic is  

           2/12/1 
 tttttttt sdiagssdiags QQQΓ .     (14) 

Compared to equation (8), this specification allows the covariance process in each 

regime to evolving independently and avoid the path-dependency problem. Furthermore, 

because we have S covariance process to evolve in parallel according to different set of 

parameters, the specification preserves the economic significant of the covariance 

dynamics in each regime and we refer this model as the independent switching dynamic 

conditional correlation GARCH (IS-DCC). Equations (1)-(5) and (13)-(14) constitute the 

specification of the IS-DCC model and the statei   IS-DCC model is denoted as 

)(iDCCIS   in this article. Under this notation, )1(DCCIS  will be the state-

independent DCC GARCH proposed by Engle.  

  

III. Estimation and Hamilton Filter for the IS-DCC model  

The estimation of parameters is performed with maximum likelihood approach. 

To maximize the likelihood one has to evaluate  
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    



T

t
tfL

1
1|log tR ,        (15) 

where   is the vector of unknown parameters to be estimated, T  is the total number of 

observations, and  1| tf tR  is the mixture distribution weighted by regime probability. 

To do this we have to use Hamilton filter (Hamilton, 1989, 1994) to evaluate the regime 

probability because the state variable is unobserved.  The Hamilton filtering procedure 

for the IS-DCC is depicted below:  

(i) Given the filtered probabilities 11
ˆ

 t|tξ  projects the state probabilities 

1t|1t1t|t ξPξ   ˆˆ
 
,       (16)

 

where  

 
 

 

































1

1

1

|

|2

|1

ˆ

tt

tt

tt

Ssp

sp

sp







1t|tξ ,  

 
 

 

































11

11

11

|

|2

|1

ˆ

tt

tt

tt

Ssp

sp

sp







1t|1tξ , (17) 

and P  is the transition probability matrix with the  ji,  element 

 isjsp tt  1|  defined as 

   
     1,2,1,

,
1 expexpexp1

exp
|


 


Siii

ji
tt isjsp





 , 1,,2,1  Sj   

     1,2,1, expexpexp1

1




Siii  
 , Sj    (18) 

where s'  are unrestricted parameters to be estimated.  

(ii) Evaluate the regime dependent likelihood 

            iiiiii tt 121211   QεεQQ 1t1t  ,   (19) 

            2/12/1 
 idiagiidiagi tttt QQQΓ , Si ,,2,1  ,  (20) 
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    tttt DΓDH ii  ,       (21) 

 

   
    







 







μRHμR
H

R

t
1

t
'

t

t

i
i

isf

t
m

tt

2

1
exp

2

1

,|

2/12/

1




,   (22) 

where m is the number of dimension and is equal to two for our hedging 

application. Define  

  

 
 

 

























Ssf

sf

sf

t

t

t

|

2|

1|

t

t

t

t

R

R

R

η


,       (23) 

the density of tR  conditional on past observations and being in regime 

Si ,,2,1   at time t.  

(iii) Evaluate the mixture likelihood  

   t1t|tt ηξ1R   ˆ| 1tf 
 
,        (24) 

where 1 is an 1m  vector of ones and   denotes elements-by-elements 

multiplication.  

(iv) Update the joint probabilities 

The state-probability is updated with the following equation  

 t1t|t

tt|t
t|t

ηξ1

ηξ
ξ












ˆ

ˆ
ˆ 1

       (25)

 

(v) Iterate (i) to (iv) until the end of the sample and the likelihood is obtained 

as a by-product of this filter  

    



T

t

L
1

ˆlog t1t|t ηξ1        (26) 
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Different from Billio and Caporin’s filter, the step of approximation for the 

covariance matrix is not required in this filtering algorithm since IS-DCC is path-

independent. To initialize the filter, the regime probabilities are set equal to the 

unconditional probabilities. Define the steady state probabilities vector as
 
 

      Tttt Sspspsp  21π .  (27) 

These probabilities are the solution of the system of equations πPπ   and 

1π1  , which can be shown as   1S
1 νAAAπ 
  , where 












1

PI
A S , and 









 1

0
ν S

1S  , SI  is an SS   identity matrix and S0  is an 1S  zero vector.   

 

IV. State-dependent MVHR and Measuring Hedging Performance 

It is well known that the estimated time-varying minimum variance hedge ratio 

denoted as t  for state-independent hedging is given by   

 
 1,

1,,

|

|,




ttf

ttftc
t rVar

rrCov




 .       (28) 

Lee (2009b) derives a formula for two-state regime switching hedge ratio which is 

given by  

     
     1,2,

2
,11,1,

2
,1

1,2,,2,
2

,11,1,,1,
2
,1

|1|

|,1|,










ttftttft

ttftctttftct
t

rVarprVarp

rrCovprrCovp




 ,   (29) 

where tp ,1  is the regime probability of being in state one at time t . Because the focus of 

this article has been investigating the effects of multi-regime switching in correlation on 
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futures hedging, a formula for multi-state regime switching hedge ratio is required. The 

stateS  regime switching hedge ratio can be generalized as 1  

 

 










S

i
ttifti

S

i
ttifticti

t

rVarp

rrCovp

1
1,,

2
,

1
1,,,,

2
,

|

|,




 ,      (30) 

where tip , ,  Si ,,2,1   are the state probabilities of being in state i and 

 1,,,, |, ttiftic rrCov   and  1,, | ttifrVar   are respectively the conditional covariance of 

spot and futures returns and conditional variance of futures returns in state i. Notice that, 

when there is no regime shifts, 1S  and equation (30) collapses to the conventional 

state-independent hedge ratio given in equation (28).  

 Hedging performance is evaluated from both a risk-minimization and a utility 

standpoint. From a risk-minimization standpoint, a hedger chooses a hedging strategy to 

minimize the variance of the hedged portfolio return or equivalently to maximize the 

variance reduction of a hedging strategy compared to the unhedged position. The 

variance of the hedged portfolio return is 

 tfttc rrVar ,,  ,        (31) 

where t  is defined in equation (30) and estimated from the proposed DCCIS   model.  

                                                 
1  This can be proved as follows. Let  pr  be the hedging portfolio return which is given by   

  























Sstateinreturnportfolio

stateinreturnportfolio

stateinreturnportfolio

pppr Sp 


2

1

21  

         SsrSsrpsrsrp tftcStftc  χχ 111 ,  

Deriving the variance of this state-dependent hedging portfolio return pr  with respect to χ  and 

using the assumption of independent switching gives equation (30). 
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Because dynamic hedging strategies are potentially more costly implement than 

static models since frequent rebalancing of the hedged portfolio is required, hedging 

effectiveness is more appropriately assessed by considering the economic benefits 

measured with utility functions. Consider a hedger with a mean-variance expected utility 

function (Kroner and Sultan, 1993; Gagnon et al., 1998; Lafuente and Novales, 2003; 

Alizadeh and Nomikos, 2004; and Lee et al., 2006): 

       1,1,1, |||   ttpttpttp rVarrErUE  ,    (32) 

where   is the coefficient of absolute risk aversion, E  stands for expectation operator 

and tpr ,  is the return from the hedged portfolio. A dynamic hedging strategy is considered 

to be superior to a static ordinary least square (OLS) method if it has higher expected 

utility net of transaction costs.  

 In addition to measuring the economic significance of dynamic hedging strategies 

with utility function, it is also interesting to test if the best DCCIS   model statistically 

significantly outperforms OLS. According to Sullivan et al. (1999) and White (2000), 

data snooping occurs when a given set of data is used more than once for purposes of 

inference or model selection. To avoid data snooping problem, White’s reality check 

(Sullivan et al., 1999 and White, 2000) is also performed to test the hypothesis that the 

best performing DCCIS   model has no predictive superiority over the benchmark, 

static OLS model. White’s reality check is based on the following 1l  performance 

statistic:  







T

Rt

N
1

1
1tff


,        (33)  
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where l  is the number of alternative models considered and 1tf 


 is the observed 

performance measure for period 1t . The kth element of  
^

1tf  is defined as:  

 2,,

2

,,,1, ˆˆˆ
tfOLStctftDCCISBesttctk rrrrf  





   ,    (34)  

where tDCCISBest ,ˆ   and  OLS̂  are the estimates of hedge ratios from the best DCCIS   

model and static OLS, respectively.  

 The null hypothesis that the best performing DCCIS   has no predictive 

superiority over the static OLS is given by 

   0max: *

,,2,1
0 

 k
lk

fEH


,       (35)  

where *

k
f  is the true performance value for each model applied to the data.2 

Because )(iDCCIS  ,  Si ,,2,1   are nested models, to investigate if 

)(iDCCIS   outperforms )1(  iDCCIS ,  Si ,,2,1  , the Diebold-Mariano (1995) 

and West (1996) (DMW) test is performed. To construct the DMW statistic, let 

   1,11,   titit ffd 


,  Si ,,2,1  , and 





T

Rt
tdNd

1
1

1 ˆ , then the DMW test statistic 

is computed as follows, 

 
VN

d
DMW 

1
 ,        (36) 

where  



 

T

Rt
t ddNV

1

2

1
1 ˆ

, R  denotes the length of estimation period, N  is the length 

of the prediction period, T  is the sample size, f  is the square error loss function, and 

                                                 
2  Politis and Romano’s (1994) stationary bootstrap resampling method is used for implementing the 
White’s reality check with 1000 bootstrap simulations and a smoothing parameters of q=0.5 (Lee et al., 
2006; Lee and Yoder, 2007a).  
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tftitcti rrv ,,,, ̂  and tftitcti rrv ,,1,,1 ˆ     with ti,̂  the hedge ratios estimated from the 

)(iDCCIS   model.  

The critical values of DMW test for nested models have to be adjusted to produce 

correct tests (McCracken, 2007). McCracken’s critical values depend on the RN /  ratio 

and the number of additional estimated parameters in the unrestricted model. The test is 

one-sided with the null hypothesis that the predictive ability of an unrestricted model is 

not superior to its nested model which is given by 

      01,11,0   titi ffEH  ,      (37) 

while the alternative is 

      01,11,   titiA ffEH  .      (38) 

 Rejection of the null hypothesis implies that the predictive ability of an 

unrestricted model is superior to its nested model. Although the DCCMS   model is not 

of interest in this study, its hedging performance is also compared with DCCIS  . Since 

DCCMS   is not nested within the DCCIS   model, regular critical values for DMW 

statistics are applied.  

 

V. Data Description and Empirical Results  

The proposed DCCIS   is applied to nearby futures contracts of wheat and corn 

traded in the Chicago Board of Trade (CBOT), cocoa and coffee traded in the New York 

Board of Trade (NYBOT), and crude oil, natural gas, heating oil, and platinum traded in 

the New York Mercantile Exchange (NYMEX) for the period January 1991 to December 

2008. Spot and Futures prices are Wednesday prices obtained from Datastream and the 

Energy Information Administration (US Department of Energy). Tuesday’s closing price 
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is used when a holiday occurs on Wednesday. The returns of each price series are 

computed as the changes in the natural logarithms of prices multiplied by 100. Estimation 

of all models was conducted using data from January 1991 to December 2007; the 

remaining data are used for out-of-sample analysis. The sub-period hedging effectiveness 

is also investigated in this study. The sample is further split into two periods: pre-2000 

(from January 1991 to December 1999) and post-2000 (from January 2000 to December 

2008). The last year data in each sub-period are used for out-of-sample analysis.  

Table I provides summary statistics of the returns series for each commodity over 

the full sample period and two sub-sample periods. For the full sample period, all returns 

are positive and small. The largest mean returns are 0.114% and 0.09% for spot and 

futures data, respectively and the smallest mean returns are 0.001% for both spot and 

futures data, respectively. The unconditional volatilities indicate that in general, the post-

2000 period is more volatile than pre-2000 period. According to the Skewness, 

leptokurtosis, and significant Jarque-Bera statistics, the unconditional distributions of 

spot and futures returns for all commodities are asymmetric, fat-tailed, and non-Gaussian. 

Parameter estimates from alternative models are presented in table II. The 

parameters are estimated by maximizing the log-likelihood functions in equation (15) 

using numerical constrained optimization procedure in GAUSS. Shown in the last row of 

table II, LRT reports the statistics of likelihood ratio test of )(iDCCIS   and its nested 

model )1(  iDCCIS . The number of state i  is increased until that the )(iDCCIS   

does not show significant increase in likelihood value compared to )1(  iDCCIS  and 

the critical values at 1% for 4,3,2i  and 5  are 13.28, 16.81, 20.09 and 23.21, 

respectively. The number of parameters in )(iDCCIS   is equal to  128  iii . 
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Namely, the number of parameters to be estimated for DCC , )2(DCCIS   to 

)5(DCCIS   are 10, 14, 20, 28, and 38, respectively.3 The LRT of crude oil is still 

significant when the number of states is increased to five. However, we do not proceed to 

)6(DCCIS   since there are fifty parameters to be estimated (   50166628  ) 

and empirically, increasing the number of states to five no longer create significant gains 

compared to four states. 

As shown in table II, all conditional mean s'  estimated are small which is 

consistent with the small average return reported in the summary statistics table. For the 

volatility equation, heating oil data has the largest volatility persistence and wheat data 

has the smallest volatility persistence among all commodities investigated in this article. 

Taking DCC model for instance, heating oil data has the largest   which is equal to 1 

and 0.993 for spot and futures returns, respectively and wheat data has the smallest    

which is equal to 0.767 and 0.435 for spot and futures returns, respectively.  

 In the correlation equation, 2  reflects the memory in correlation. In state-

independent DCC, coffee and corn have the largest and smallest memory in correlation 

with 2  equal to 0.924 and 0.113, respectively. For the state-dependent DCC models, the 

memory is not a constant but regime-dependent. For example, 2  in the )5(DCCIS   for 

corn is decomposed into five possible memory strengths, 0.002, 0.013, 0.379, 0.4886 and 

0.728 in five different regimes. Most of the parameters in the correlation equation are 

significant implying the importance of modeling the regime-switching time-varying 

correlation of spot and futures returns. The total impact of a unit shock to future 

                                                 
3  To save space, estimation results of MS-DCC and parameters s' for the transition probabilities 
are not reported here but are available from the authors upon request.  
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correlation is   1
21 1  . For the state-dependent DCC models, the total impact of a unit 

shock of natural gas and corn have the largest and smallest shock to the future 

correlations with   1
21 1  equal to 0.94 and 0.206, respectively. The total impact in the 

regime-independent model is somewhere in between the largest impact and the smallest 

impact in the regime-dependent model. Taking natural gas for instance, the state-

dependent impact strengths are 0, 0.169, 0.958, and 0.997 and the regime-independent 

impact 0.94 (   1928.01068.0  ) is somewhere in between the largest impact 0.997 and 

the smallest impact 0. 

 Table III reports the out-of-sample hedging effectiveness of alternative hedging 

strategies. Out-of-sample hedging effectiveness is considered because for the hedger, 

what matters most is the hedging performance in the future not in the past. It is found that 

in general )2(DCCIS   outperforms DCC . The only exception is coffee. The 

percentage variance reduction of )2(DCCIS   is 64.13% which is lower than that of 

DCC with a 64.31% variance reduction.4 This is consistent with most findings in the 

previous regime switching hedging studies that allowing the hedge ratio to be state-

dependent increases the hedging effectiveness. This article investigates if allowing the 

number of regime to be more than two can further improve the hedging effectiveness. 

Empirical results reveal that when the number of regimes is increased from two to three, 

)3(DCCIS   outperforms )2(DCCIS   for all commodities considered in this study. 

Compared to )2(DCCIS  , the largest and smallest improvements of )3(DCCIS   are 

2.55% and 0.03% for cocoa and natural gas, respectively. The results, however, are not 

                                                 
4  Percentage variance reductions are calculated as the differences of variance of unhedged position 
and estimated variance of alterative models over variance of unhedged position multiplied by 100. 
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promising when the number of states is increased from three to four. Only 

)4(DCCIS  of corn creates a 0.26% significantly improvement compared to 

)3(DCCIS  . It is also found that increasing the number of states from four to five as 

appeared in the corn, crude oil and heating oil data does not always provide further 

hedging benefit. Only )5(DCCIS   for crude oil provides a 0.02% improvement 

compared to )4(DCCIS   and )5(DCCIS   is inferior to )3(DCCIS   with a 0.07% 

less in variance reduction. Generally speaking, allowing the correlation to be subject to 

regime switching improves the hedging effectiveness compared to a model with state-

independent correlation and three-state correlation hedging exhibits superior performance 

when full sample data is investigated.  

 Due to the frequently rebalancing requirement of dynamic hedging strategies, they 

are more costly than static OLS hedging. Following other empirical studies (Lafuente and 

Novales, 2003; Alizadeh and Nomikos, 2004; and Lee et al., 2006), the economics value 

of these dynamic hedging methods are also investigated by comparing the utility 

improvements of these methods relative to static OLS hedging. The hedger is assumed to 

have an expected utility function given by equation (32) with the coefficient of absolute 

risk aversion   equal to 4. As shown in table III, taking wheat data for example, the 

average weekly variance of the returns from hedged portfolio for OLS and IS-DCC3 

hedging are 11.753 and 8.039, respectively. Although not reported here, the hedged 

portfolio returns of OLS and )3(DCCIS  hedging are -0.166% and 0.278%, respectively. 

Based on equation (32), if an investor adopts OLS hedging, the average weekly utility is 

  18.47753.114%-0.166 OLSU . With )3(DCCIS  , the average weekly utility is 
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  88.31039.840.278%3 DCCISU . The hedger’s net benefit from using 

)3(DCCIS   hedging over OLS hedging is equal to CUU OLSDCCIS  3  

C 3.15 , where C  stands for the transaction cost from dynamic rebalancing. This 

implies that if 3.15C , the )3(DCCIS   hedging is preferred to OLS hedging. Since the 

typical round trip transaction cost is around 0.02% to 0.04%, a mean-variance expected 

utility-maximizing hedger will benefit from hedging with )3(DCCIS   even after taking 

account of these transaction costs. It is found that DCC does not create utility gain for 

cocoa, heating oil and natural gas data and all state-dependent DCCIS   hedging 

generate utility gains compared to OLS hedging. To test the statistical significance of the 

hedging effectiveness of the best DCCIS   over the benchmark, static OLS hedging, 

White’s reality check is performed. As reported in table III, based on White’s reality 

check p-values, the no improvement null hypothesis of the best DCCIS   over OLS is 

rejected at least at 10% significant level for most of the commodities. Exceptions are 

cocoa and natural gas data with reality check p-values equal to 0.423 and 0.267, 

respectively.  

 Because )(iDCCIS  ,  Si ,,2,1   are nested models, to investigate if 

)(iDCCIS   significantly outperforms )1(  iDCCIS ,  Si ,,2,1  , the Diebold-

Mariano (1995) and West (1996) (DMW) test is performed with adjusted critical values 

reported by McCracken (2007). McCracken’s critical values depend on the RN /  ratio 

and the number of additional estimated parameters in the unrestricted model. When the 

full data sample is applied, the RN /  ratio is equal to 0.06 and the number of additional 

estimated parameters for )(iDCCIS  , i=2,3,4 and 5 are four, six, eight, and ten, 

respectively. The critical values are tabulated for 0/ RN  and 0.1, and we construct the 
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values for 06.0/ RN  by interpolation. As reported in table IV, It’s found that 

)2(DCCIS   is superior to DCC at 10% significant level for corn, crude oil and heating 

oil but not the rest of the commodities. )3(DCCIS  is superior to )2(DCCIS   at 5% 

level significant level for cocoa and coffee and at 10% level for wheat and crude oil. 

Although )3(DCCIS   does not provide significant improvement over )2(DCCIS   for 

corn, natural gas, heating oil and platinum, all DMW statistics are positive implying that 

)3(DCCIS   is not inferior to )2(DCCIS   and has a tendency to be superior to 

)2(DCCIS  . When )3(DCCIS   is compared with DCC , again, all DMW statistics 

are positive and )3(DCCIS  is superior to DCC  at 5% level significant level for wheat 

and crude oil and at 10% level for corn, cocoa, coffee and heating oil. When the number 

of states is increased from three to four, )4(DCCIS   significantly outperforms 

)3(DCCIS  only for corn. The DMW statistics for coffee and natural gas are negative 

and significant at 10% level, implying that )3(DCCIS   outperforms )4(DCCIS   for 

these two commodities. The performances are not significantly different for crude oil, 

heating oil and platinum. When the number of states is further increased from four to five, 

all DMW statistics are not significant indicating that the performance of )5(DCCIS   is 

statistically indifferent to )4(DCCIS  . Overall, )3(DCCIS   exhibits superior 

performance when full sample data is investigated.  

 Although the DCCMS   model is not of interest in this paper due to its 

requirement of recombining procedure and the problem of analytical intractability, a 

comparison of the proposed DCCIS   and DCCMS   is also performed and reported in 

table V. It’s found that )2(DCCIS   is superior to DCCMS  at 10% significant level 
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for wheat and at 5% level for natural gas and the performance of )2(DCCIS   is not 

significantly different from DCCMS   for the rest of the commodities. As for 

)3(DCCIS  , it is superior to DCCMS   at 5% significant level for wheat and natural 

gas. All DMW statistics are positive implying that )3(DCCIS   is not inferior to and has 

a tendency to be superior to DCCMS  .  

To check the consistency of the performance of DCCIS   over different hedging 

periods, the data is further split into two sub-samples. In the first sub-sample (pre-2000), 

in- and out-of-sample periods are from January 1991 to December 1998 and from January 

1999 to December 1999, respectively, and in the second sub-sample (post-2000), in- and 

out-of-sample periods are from January 2000 to December 2007 and from January 2008 

to December 2008, respectively. Table VI and VII present the hedging performances of 

DCCIS   over post-2000 and pre-2000 sub-periods, respectively. It is found that, most 

state-dependent DCCIS   hedging outperform OLS in terms of percentage variance 

reduction and generate utility gains compared to OLS hedging. OLS occasionally 

outperforms all dynamic hedging methods. OLS has the best performance for coffee in 

the post-2000 period and for wheat and heating oil in the pre-2000 period.5 For the post-

2000 period, White’s reality check p-values show that the no improvement null 

hypothesis of best DCCIS   over OLS is rejected at the 10% significant level for corn, 

at the 5% significant level for platinum and at the 1% significant level for crude oil and 

natural gas. As for the pre-2000 period, the no improvement null hypothesis of best 

DCCIS   over OLS is rejected only for corn at the 5% significant level.  

                                                 
5  This is consistent with some previous findings that more elaborate dynamic hedging method might 
not improve the hedging effectiveness compared to the static hedging method (Byström, 2003; Lee et al., 
2006; and Lee and Yoder, 2007a). 
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For the nested )(iDCCIS  ,  Si ,,2,1  , in the post-2000 period, 

)2(DCCIS   outperforms other models for wheat, corn, cocoa, coffee and natural gas. 

)3(DCCIS   has the best performance for heating oil and platinum and )4(DCCIS   

has the best performance for crude oil. As for the pre-2000 period, )3(DCCIS   has the 

best performance for wheat, coffee, heating oil and platinum and )4(DCCIS   has the 

best performance for corn and crude oil. )2(DCCIS   outperforms other models only for 

natural gas and the state-independent DCC has the best performance for cocoa data. 

Overall, two-state DCCIS   has better performance for majority of the commodities in 

the post-2000 period and more than two-state DCCIS   has better performance for 

majority of the commodities in the pre-2000 period.  

The Diebold-Mariano and West (DMW) test statistics for the sub-periods are 

reported in table VIII. The RN /  ratio for the McCracken’s critical values is equal to 

0.125 for each sub-period and the number of additional estimated parameters for 

)(iDCCIS  , i=2,3,4 and 5 are four, six, eight, and ten, respectively. The critical values 

are tabulated for 1.0/ RN  and 0.2, and we construct the values for 125.0/ RN  by 

interpolation. In the post-2000 sub-period, )2(DCCIS   is superior to DCC at the 5% 

significant level for wheat, crude oil, heating oil and platinum. )3(DCCIS  provides 

further significant improvement over )2(DCCIS   for heating oil and )4(DCCIS   

provides further significant improvement over )3(DCCIS   for crude oil. As for the pre-

2000 sub-period, )2(DCCIS   is superior to DCC at the 10% significant level for 

platinum and at the 1% level for wheat and heating oil. )3(DCCIS   provides further 

significant improvement over )2(DCCIS   for heating oil and )4(DCCIS   provides 
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further significant improvement over )3(DCCIS   for corn and crude oil. Overall, most 

of the DMW statistics of the best DCCIS   are positive compared to state-independent 

DCC in both sub-periods reveals that allowing the correlation to be subject to regime 

shifts has a tendency to improve the hedging performances. These statistics are 

significant for wheat, crude oil, heating oil, and platinum in the post-2000 period and for 

wheat and heating oil in the pre-2000 period.  

Figures 1 shows the hedge ratios estimated by using OLS , DCC , and 

)3(DCCIS   for wheat.6 The conditional hedge ratios are very volatile revealing that 

adjustment of the hedge portfolio using dynamic hedging strategies is highly required. 

Figure 2 shows the state-dependent time-varying correlations in each regime. The 

maximum number of states for wheat is three when full sample is considered. 

)3(DCCIS   decomposes correlations into three different regimes with different 

volatilities in correlations. The volatilities of correlations are equal to 0.006, 0.162 and 

0.301 in state three, one and two, respectively. State three is the regime that spot and 

futures return series have a nearly constant correlation. State two is the state with a 

highest volatility of correlation and the volatility of correlation in state one is somewhere 

in between. The regime probabilities of being in each regime are plotted in figures 3 to 5. 

As for the corn data, the hedge ratios estimated by using OLS , DCC , and )5(DCCIS   

are plotted in figure 6 and the state-dependent time-varying correlations in each regime 

are plotted in figure 7 and 8. )5(DCCIS   decomposes correlations into five different 

states with different volatilities in correlations. The volatilities of correlations are equal to 

                                                 
6   To save space, only those figures for three-state case of wheat and five-state case of corn are 
illustrated here and to make the correlation figures more clearly, only post-2000 period is plotted for the 
five-state case of corn.  
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0, 0.038, 0.175, 0.35 and 0.518 in state two, one, three, five and four, respectively. State 

two is the regime that spot and futures return series have a nearly constant correlation. 

State one and three have relatively smaller volatilities in correlations. Instead, as 

illustrated in figure 8, state four and five have relatively larger volatilities in correlations 

and volatility in correlation is larger in state four than in state five. The regime 

probabilities of being in each regime for the five-state case of corn are plotted in figures 9 

to 13. 

 

VI. CONCLUSIONS 

The focus of this article has been investigating the effects of multi-regime 

switching in correlation on futures hedging via an independent switching dynamic 

conditional correlation GARCH ( DCCIS  ) model. DCCIS   avoids the path-

dependency and recombining problems inherent in the DCCMS   which possess 

problems of computational intensive and analytical intractability. To author’s knowledge, 

no existing paper investigates multi-regime correlation futures hedging. This might be the 

fact that previous regime switching hedging models allow a fully model switching and 

the potential overparameter and convergence problems limit the discussion of the 

possible number of state to two.  

Empirical results from commodity futures hedging exercise show that DCCIS   

outperforms state-independent DCC  and three-state DCCIS   exhibits superior 

hedging effectiveness when full sample period is investigated. Sub-sample periods 

hedging results show that two-state DCCIS   has better performance for majority of the 

commodities in the post-2000 period and DCCIS  with more than two states have better 
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performances for majority of the commodities in the pre-2000 period. Overall, the 

contribution of this paper is twofold. The proposed DCCIS   provides a general 

framework for modeling multi-state regime switching time-varying correlation and 

results of hedging exercises illustrate the importance of modeling this feature for optimal 

dynamic futures hedging.  
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Table I 
Summary Statistics for Spot and Futures Returns (In Percentage) of Full Sample and Two Sub-Sample Periods 

 
Sample Period: 1991-2008 Sample Period: 1991-1999 Sample Period: 2000-2008 

Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures 
WHEAT CORN WHEAT CORN WHEAT CORN 

Mean  0.094  0.090 0.048 0.060 -0.006 -0.014 -0.053 -0.027 0.194 0.193 0.149 0.147 

Maximum 20.955  22.706 15.979 13.799 14.864 16.954 15.978 13.799 20.955 22.706 15.979 13.490 
Minimum -18.275  -18.332 -18.232 -16.895 -12.609 -18.332 -14.833 -15.310 -18.275 -17.742 -18.232 -16.895 
Std. Dev. 3.762  3.983 3.809 3.624 3.163 3.378 3.183 3.027 4.278 4.508 4.345 4.136 
Skewness 0.252  0.271 -0.299 -0.053 -0.050 0.017 -0.201 0.115 0.332 0.337 -0.357 -0.146 
Kurtosis 6.432  5.522 5.789 5.138 5.346 6.109 6.233 5.660 6.068 4.781 5.071 4.454 
Jarque-Bera 470.75***  260.36*** 318.40*** 179.33*** 107.79*** 188.95*** 207.41*** 139.31*** 193.01*** 71.01*** 93.96*** 43.09*** 

COCOA COFFEE COCOA COFFEE COCOA COFFEE 
Mean  0.114  0.090 0.037 0.026 0.003 -0.065 0.073 0.066 0.225 0.244 0.000 -0.015 

Maximum 33.841  20.191 31.038 39.309 33.841 19.133 31.038 39.309 19.129 20.191 17.494 18.906 
Minimum -20.371  -14.129 -23.245 -25.093 -20.371 -10.182 -20.918 -22.398 -18.539 -14.129 -23.245 -25.093 
Std. Dev. 4.055  4.248 5.052 5.614 3.763 3.701 5.764 6.445 4.328 4.731 4.229 4.645 
Skewness 0.803  0.256 0.392 0.530 2.238 0.584 0.619 0.722 -0.165 0.054 -0.249 -0.078 
Kurtosis 12.066  4.445 7.458 7.941 23.248 5.342 7.103 7.742 5.520 3.810 5.879 5.216 
Jarque-Bera 3316.67***  91.99*** 801.80*** 999.20*** 8402.77*** 133.83*** 359.01*** 480.27*** 126.46*** 13.09*** 167.22*** 96.61*** 

CRUDE OIL NATURAL GAS CRUDE OIL NATURAL GAS CRUDE OIL NATURAL GAS 
Mean  0.055  0.055 0.001 0.001 -0.001 0.000 0.035 0.043 0.111 0.111 0.186 0.182 

Maximum 30.305  23.244 0.944 0.398 15.036 16.032 94.446 31.573 30.305 23.244 54.714 39.805 
Minimum -29.214  -37.288 -0.728 -0.372 -29.214 -37.288 -72.789 -37.165 -23.263 -23.591 -33.694 -27.852 
Std. Dev. 4.970  4.747 0.105 0.081 4.581 4.420 11.806 7.820 5.335 5.056 9.462 8.362 
Skewness -0.342  -0.697 0.498 0.198 -0.446 -0.998 0.535 0.120 -0.281 -0.496 0.441 0.237 
Kurtosis 6.483  8.345 16.538 5.324 6.923 13.630 21.515 5.924 6.022 5.027 6.533 4.983 
Jarque-Bera 492.89***  1193.66*** 6004.46*** 181.07*** 316.20*** 2286.20*** 4471.58*** 111.90*** 185.00*** 99.75*** 259.65*** 81.40*** 

HEATING OIL PLATINUM HEATING OIL PLATINUM HEATING OIL PLATINUM 
Mean  0.060  0.069 0.083 0.087 -0.014 -0.009 0.017 0.009 0.133 0.147 0.149 0.165 

Maximum 41.700  17.246 13.248 17.728 26.489 17.246 8.900 10.127 41.700 15.963 13.248 17.728 
Minimum -28.471  -26.680 -19.299 -16.074 -24.547 -26.680 -11.315 -8.681 -28.471 -21.360 -19.299 -16.074 
Std. Dev. 5.277  4.697 2.893 3.012 4.642 4.156 2.214 2.299 5.846 5.183 3.442 3.586 
Skewness 0.218  -0.333 -0.755 -0.170 0.148 -0.511 -0.265 0.039 0.232 -0.249 -0.861 -0.250 
Kurtosis 9.975  5.153 7.884 7.872 8.385 7.283 5.731 5.155 9.921 3.947 6.964 6.996 
Jarque-Bera 1910.81***  198.76*** 1022.53*** 933.28*** 568.38*** 378.90*** 151.21*** 90.89*** 942.16*** 22.43*** 365.88*** 317.64*** 

Note:  *** indicates significance at the 1% level and returns are calculated as the differences in the logarithm of price multiplied by 100.  
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Table II. 
Estimates of Unknown Parameters of Alternative Models 

Data period is from January 1991 to December 2007 
 

 WHEAT CORN 
  DCC IS-DCC(2)1 IS-DCC(3) DCC IS-DCC(2) IS-DCC(3) IS-DCC(4) IS-DCC(5) 
 Mean Equation Mean Equation 

c  0.087  0.088  0.131  0.301  0.266  0.366  0.527  0.534  
 (0.090)2 (0.123) (0.127) (0.102)*** (0.098)*** (0.087)*** (0.032)*** (0.028)*** 

f  
0.102  0.063  0.118  0.330  0.188  0.305  0.513  0.516  

 (0.109) (0.090) (0.124) (0.106)*** (0.111)** (0.090)*** (0.034)*** (0.034)*** 
 Volatility Equation Volatility Equation 

c  2.704  3.178  3.060  0.955  0.974  1.021  0.860  0.944  
 (0.590)*** (4.005  (0.757)*** (0.195)*** (0.194)*** (0.207)*** (0.216)*** (0.123)*** 

f  
7.902  6.979  6.809  0.905  0.905  1.123  0.920  1.035  

 (2.118)*** (11.287)  (2.423)*** (0.244)*** (0.237)*** (0.288)*** (0.292)*** (0.183)*** 

c  0.192  0.171  0.165  0.148  0.143  0.108  0.104  0.105  
 (0.037)*** (0.043)*** (0.035)*** (0.022)*** (0.021)*** (0.014)*** (0.009)*** (0.006)*** 

f  
0.164  0.143  0.138  0.094  0.110  0.099  0.100  0.100  

 (0.041)*** (0.091)* (0.040)*** (0.018)*** (0.019)*** (0.014)*** (0.009)*** (0.007)*** 
c  0.575  0.547  0.563  0.777  0.786  0.802  0.817  0.809  

 (0.066)*** (0.388)* (0.081)*** (0.029)*** (0.026)*** (0.026)*** (0.029)*** (0.016)*** 
f  

0.271  0.347  0.364  0.828  0.819  0.801  0.817  0.807  
 (0.161)** (0.905) (0.194)** (0.032)*** (0.030)*** (0.033)*** (0.035)*** (0.020)*** 
 Correlation Equation Correlation Equation 
 11  0.115  0.021  0.119  0.182  0.342  0.266  0.000  0.079  

 (0.037)*** (0.115) (0.063)** (0.040)*** (0.074)*** (0.066)*** (0.018) (0.054)* 
 21   0.467  0.533   0.048  0.988  0.986  0.000  

  (0.056)*** (0.058)***  (0.030)* (0.006)*** (0.008)*** (0.006) 
 31    0.009    0.039  0.291 0.272  

   (0.014)   (0.024)** (0.046)*** (0.048)*** 
 41        0.093  0.987  

       (0.070)* (0.001)*** 
 51         0.956  

        (0.030)*** 
 12  0.638  0.299  0.881  0.113  0.658  0.734  0.285  0.488  

 (0.117)*** (13.974) (0.090)*** (0.061)** (0.080)*** (0.075)*** (2.342) (0.362)* 
 22   0.533  0.466   0.175  0.007  0.014  0.379  

  (0.061)*** (0.060)***  (0.124)* (0.007) (0.008)** (2.621) 
 32    0.238    0.360  0.709  0.728  

   (2.686)   (0.219) )* (0.031)*** (0.056)*** 
 42        0.384  0.013  

       (0.337) (0.001)*** 
 52         0.002  

        (0.007) 
LRT3  44.38 14.94  86.39 120.57 44.36 11.80 

Note:     1.   iDCCIS   stands for the i -state independent switching GARCHDCC   model.  

2. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level 
and 1% level, respectively. 

3. LRT stands for the likelihood ratio test. The likelihood ratio test statistics is given by  
    )(ln)1(ln2 iLiLLRT  , where )(iL is the likelihood value of  iDCCIS  . The 

critical values at 1% for 5,4,3,2i  are 13.28, 16.81, 20.09 and 23.21, respectively.  
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Table II.  Continue 
Estimates of Unknown Parameters of Alternative Models 

Data period is from January 1991 to December 2007 

 
 COCOA COFFEE 
  DCC IS-DCC(2)1 IS-DCC(3) DCC IS-DCC(2) IS-DCC(3) IS-DCC(4) 

 Mean Equation Mean Equation 

c  0.119  0.111  0.115  -0.013  -0.042  -0.008  -0.030  
 (0.099)2 (0.088) (0.112) (0.057) (0.097) (0.005)* (0.023)* 

f  
0.098  0.099  0.091  -0.018  -0.072  -0.038  -0.057  

 (0.107) (0.094) (0.113) (0.055) (0.111) (0.043) (0.037)* 
 Volatility Equation Volatility Equation 

c  0.752  0.605  0.694  1.684  2.581  0.608  1.921  
 (0.240)*** (0.195)*** (0.222)*** (0.654)*** (0.883)*** (0.285)** (0.733)*** 

f  
0.200  0.130  0.172  2.046  3.452  0.586  1.968  

 (0.103)** (0.077)** (0.098)** (0.794)*** (1.188)*** (0.357)* (0.646)*** 

c  0.056  0.047  0.046  0.085  0.083  0.051  0.076  
 (0.014)*** (0.011)*** (0.011)*** (0.017)*** (0.018)*** (0.015)*** (0.018)*** 

f  
0.031  0.033  0.030  0.087  0.078  0.048  0.073  

 (0.010)*** (0.008)*** (0.009)*** (0.017)*** (0.018)*** (0.015)*** (0.018)*** 
c  0.895  0.911  0.904  0.848  0.808  0.926  0.848  

 (0.025)*** (0.021)*** (0.024)*** (0.038)*** (0.049)*** (0.023)*** (0.041)*** 
f  

0.957  0.961  0.960  0.845  0.798  0.931  0.856  
 (0.013)*** (0.010)*** (0.012)*** (0.037)*** (0.053)*** (0.024)*** (0.033)*** 
 Correlation Equation Correlation Equation 
 11  0.087  0.371  0.370  0.063  0.113  0.810  0.111  

 (0.025)*** (0.114)*** (0.127)*** (0.009)*** (0.026)*** (0.000)*** (0.033)*** 
 21   0.029  0.185   0.216  0.080  0.000  

  (0.009)*** (0.116)**  (0.082)*** (0.032)*** (0.025) 
 31    0.039    0.011  0.795  

   (0.013)***   (0.091) (0.002)*** 
 41        0.036  

       (0.019)** 
 12  0.896  0.627  0.628  0.924  0.887  0.190  0.889  

 (0.029)*** (0.117)*** (0.130)*** (0.010)*** (0.029)*** (0.000)*** (0.032)*** 
 22   0.962  0.000   0.003  0.920  0.231  

  (0.012)*** (0.024)  (0.010)*** (0.033)*** (1.184) 
 32    0.961    0.156  0.205  

   (0.013)***   (0.227)*** (0.002)*** 
 42        0.964  

       (0.019)*** 
LRT3  58.81 12.43  80.14 17.04        15.63 

Note:     1.  iDCCIS   stands for the i -state independent switching GARCHDCC   model. 

2. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level 
and 1% level, respectively. 

3. LRT stands for the likelihood ratio test. The likelihood ratio test statistics is given by  
    )(ln)1(ln2 iLiLLRT  , where )(iL is the likelihood value of  iDCCIS  . The 

critical values at 1% for 5,4,3,2i  are 13.28, 16.81, 20.09 and 23.21, respectively.  
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Table II.  Continue 
Estimates of Unknown Parameters of Alternative Models 

Data period is from January 1991 to December 2007 
 

 CROUD OIL   NATURAL GAS 
  DCC IS-DCC(2)1 IS-DCC(3) IS-DCC(4) IS-DCC(5) DCC IS-DCC(2) IS-DCC(3) IS-DCC(4)
 Mean Equation   Mean Equation 

c  0.087  0.046  0.159  0.184  0.163  0.168  0.108  0.069  0.083  
 (0.178)2 (0.126) (0.677) (0.052)*** (0.119)* (0.354)** (0.248)* (0.555)* (0.217)* 

f  
0.085  0.028  0.171  0.197  0.167  0.248  0.130  0.247  0.230  

 (0.173) (0.124) (0.677) (0.051)*** (0.121)* (0.315)** (0.306)** (0.367)* (0.186)** 
 Volatility Equation   Volatility Equation 

c  1.652  1.966  2.648  1.339  2.719  9.848  11.597  11.603  12.156  
 (0.490)*** (0.522)*** (0.868)*** (0.165)*** (0.768)*** (2.125)*** (2.205)*** (2.195)*** (2.328)***

f  
1.441  1.971  2.706  1.535  2.904  5.366  7.826  8.947  9.556  

 (0.418)*** (0.516)*** (0.915)*** (0.192)*** (0.781)*** (1.485)*** (1.931)*** (2.174)*** (2.392)***

c  0.222  0.167  0.159  0.080  0.104  0.310  0.305  0.289  0.288  
 (0.030)*** (0.025)*** (0.027)*** (0.007)*** (0.015)*** (0.039)*** (0.041)*** (0.039)*** (0.038)***

f  
0.218  0.169  0.146  0.072  0.100  0.240  0.227  0.244  0.245  

 (0.029)*** (0.024)*** (0.026)*** (0.007)*** (0.016)*** (0.036)*** (0.035)*** (0.035)*** (0.036)***
c  0.744  0.759  0.743  0.871  0.790  0.643  0.624  0.637  0.630  

 (0.035)*** (0.031)*** (0.046)*** (0.006)*** (0.039)*** (0.036)*** (0.037)*** (0.036)*** (0.037)***
f  

0.751  0.758  0.750  0.868  0.785  0.721  0.701  0.680  0.668  
 (0.033)*** (0.031)*** (0.047)*** (0.007)*** (0.039)*** (0.034)*** (0.039)*** (0.043)*** (0.048)***
 Correlation Equation   Correlation Equation 
 11  0.156  0.000  0.880  0.670  0.376  0.068  0.097  0.141  0.169  

 (0.021)*** (0.025) (0.025)*** (0.032)*** (0.107)*** (0.013)*** (0.051)*** (0.039)*** (0.111)***
 21   0.455  0.000  0.268  0.997   0.135  0.670  0.000  

  (0.034)*** (0.006)*** (0.034)*** (0.001)***  (0.035)*** (0.173)*** (0.004) 
 31    0.318  0.000  0.776    0.081  0.744  

   (0.031)*** (0.003) (0.038)***   (0.042) (0.222)***
 41     0.998  0.000     0.139  

    (0.001)*** (0.007)    (0.037)***
 51      0.289      

     (0.034)***     
 12  0.599  0.010  0.120  0.330  0.000  0.928  0.000  0.852  0.000  

 (0.045)*** (0.109) (0.026)*** (0.033)*** (0.062) (0.013)*** (0.046) (0.042) (0.016) 
 22   0.543  0.115  0.731  0.001   0.858  0.330  0.247  

  (0.035)*** (2.818) (0.039)*** (0.001)  (0.037)*** (0.181)*** (2.790) 
 32    0.681  0.119  0.224    0.000  0.253  

   (0.033)*** (0.476) (0.038)***   (0.053) (0.227)** 
 42     0.001  0.000     0.855  

    (0.001) (0.226)    (0.040)***
 52      0.710      

     (0.035)***     
LRT3  389.94 77.13      52.54       45.954  75.37 17.59          1.5 

Note:     1.  iDCCIS   stands for the i -state independent switching GARCHDCC   model. 

2. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level 
and 1% level, respectively. 

3. LRT stands for the likelihood ratio test. The likelihood ratio test statistics is given by  
    )(ln)1(ln2 iLiLLRT  , where )(iL is the likelihood value of  iDCCIS  . The critical values 

at 1% for 5,4,3,2i  are 13.28, 16.81, 20.09 and 23.21, respectively.  

4. The LRT of crude oil is still significant. However, we do not proceed to  6DCCIS   since there are fifty 

parameters to be estimated and empirically, increasing the number of states to five does not create significant 
gains compared to four states.  
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Table II.  Continue 
Estimates of Unknown Parameters of Alternative Models 

Data period is from January 1991 to December 2007 

 
 HEATING OIL   PLATINUM 
  DCC IS-DCC(2)1 IS-DCC(3) IS-DCC(4) IS-DCC(5) DCC IS-DCC(2) IS-DCC(3) IS-DCC(4)
 Mean Equation   Mean Equation 

c  0.004  0.044  -0.018  -0.114  -0.111  0.104  0.089  0.108  0.102  
 (0.021)2 (0.069) (0.038) (0.063 )** (0.064)** (0.069)* (0.080) (0.069)* (0.290) 

f  
0.038  0.035  -0.024  -0.095  -0.093  0.109  0.092  0.114  0.108  

 (0.037) (0.069) (0.039) (0.060)* (0.062)* (0.072)* (0.084) (0.069)* (0.294) 
 Volatility Equation   Volatility Equation 

c  1.225  1.961  2.513  2.874  2.829  0.175  0.159  0.168  0.174  
 (0.343)*** (0.418)*** (0.502)*** (0.420)*** (0.441)*** (0.052)*** (0.051)*** (0.049)*** (0.086)***

f  
0.998  1.885  2.457  2.522  2.478  0.180  0.169  0.183  0.184  

 (0.311)*** (0.438)*** (0.568)*** (0.368)*** (0.384)*** (0.049)*** (0.049)*** (0.049)*** (0.075)***

c  0.271  0.254  0.251  0.251  0.246  0.093  0.088  0.084  0.084  
 (0.022)*** (0.026)*** (0.026)*** (0.029)*** (0.048)*** (0.013)*** (0.013)*** (0.012)*** (0.012)***

f  
0.234  0.251  0.265  0.255  0.250  0.079  0.077  0.074  0.073  

 (0.024)*** (0.026)*** (0.027)*** (0.029)*** (0.048)*** (0.011)*** (0.011)*** (0.010)*** (0.011)***
c  0.729  0.705  0.690  0.680  0.684  0.886  0.887  0.893  0.891  

 (0.021)*** (0.025)*** (0.027)*** (0.022)*** (0.02)*** (0.016)*** (0.016)*** (0.014)*** (0.018)***
f  

0.759  0.704  0.676  0.685  0.689  0.900  0.899  0.900  0.899  
 (0.024)*** (0.029)*** (0.032)*** (0.023)*** (0.027)*** (0.013)*** (0.013)*** (0.013)*** (0.014)***
 Correlation Equation   Correlation Equation 
 11  0.151  0.006  0.741  0.995  0.657  0.082  0.273  0.143  0.670  

 (0.020)*** (0.009) (0.050)*** (0.002)*** (0.051)*** (0.016)*** (0.053)*** (0.049)*** (0.080)***
 21   0.444  0.005  0.005  0.000   0.132  0.649  0.056  

  (0.045)*** (0.009)  (0.009) (0.057)  (0.051)*** (0.076)*** (0.040)* 
 31    0.210  0.209  0.211    0.080  0.238  

   (0.027)*** (0.026)*** (0.025)***   (0.024)*** (0.087)***
 41     0.648  0.995     0.127  

    (0.047)*** (0.003)***    (0.133) 
 51      0.106      

     (0.273)     
 12  0.720  0.000  0.253  0.004  0.338  0.911  0.724  0.000  0.327  

 (0.034)*** (0.026) (0.052)*** (0.003)** (0.052)*** (0.020)*** (0.056)*** (0.027) (0.080)***
 22   0.544  0.000  0.000  0.380   0.000  0.348  0.944  

  (0.046)*** (0.034) (0.015) (7.239)  (0.029) (0.075)*** (0.044)***
 32    0.788  0.791  0.788    0.920  0.762  

   (0.029)*** (0.027)*** (0.026)***   (0.026)*** (0.111)***
 42     0.346  0.005     0.000  

    (0.047)*** (0.003)**    (0.121) 
 52      0.000      

         (0.123)         
LRT3  253.71 46.57 31.87 8.52  64.35 35.52 7.34 

Note:     1.  iDCCIS   stands for the i -state independent switching GARCHDCC   model. 

2. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level 
and 1% level, respectively. 

3. LRT stands for the likelihood ratio test. The likelihood ratio test statistics is given by  
    )(ln)1(ln2 iLiLLRT  , where )(iL is the likelihood value of  iDCCIS  . The 

critical values at 1% for 5,4,3,2i  are 13.28, 16.81, 20.09 and 23.21, respectively.  
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Table III 
Out-of-Sample Hedging Effectiveness. Hedging period is from January 2008 to December 2008 

 

 

Variance of 
Hedged 

Portfolio Return 

Percentage 
Variance 

Reduction1

Improvement of 
IS-DCC(3) over 

Other model2 

Expected 
Weekly 
Utility3 

Utility Gain of 
Dynamic Hedging 
Models over OLS4

Variance of 
Hedged 

Portfolio Return

Percentage 
Variance 

Reduction1

Improvement of 
IS-DCC(3) over 

Other model2 

Expected 
Weekly 
Utility3 

Utility Gain of 
Dynamic Hedging 
Models over OLS4 

 WHEAT  (RC=0.074*)5 CORN  (RC=0.000***) 
Unhedged 59.674      52.052      
OLS 11.753  80.30% 6.22% -47.177   2.514  95.17% 2.37% -10.089   
DCC 9.414  84.22% 2.30% -37.212  9.964  1.580  96.97% 0.58% -6.268  3.821  
IS-DCC(2) 8.707  85.41% 1.12% -34.628  12.548  1.331  97.44% 0.10% -5.286  4.803  
IS-DCC(3) 8.039  86.53%  -31.878  15.298  1.280  97.54%  -5.079  5.010  
IS-DCC(4)      1.143  97.80% -0.26% -4.519  5.570  
IS-DCC(5)      1.152  97.79% -0.25% -4.546  5.543  
 COCOA  (RC=0.423) COFFEE  (RC=0.085*) 
Unhedged 26.518      11.435      
OLS 10.956  58.68% 2.63% -43.731   4.196  63.31% 2.66% -16.676   
DCC 11.022  58.44% 2.88% -43.877  -0.146  4.081  64.31% 1.65% -16.191  0.485  
IS-DCC(2) 10.934  58.77% 2.55% -43.596  0.135  4.102  64.13% 1.83% -16.261  0.415  
IS-DCC(3) 10.258  61.32%  -40.928  2.803  3.892  65.96%  -15.403  1.274  
IS-DCC(4)      3.987  65.13% 0.83% -15.755  0.921  
 CRUDE OIL  (RC=0.010***) NATURAL GAS  (RC=0.267) 
Unhedged 68.080      40.122      
OLS 2.537  96.27% 1.50% -10.182   16.790  58.15% 0.33% -67.256   
DCC 1.717  97.48% 0.30% -6.958  3.224  16.917  57.84% 0.65% -67.885  -0.630  
IS-DCC(2) 1.611  97.63% 0.14% -6.504  3.678  16.668  58.46% 0.03% -66.913  0.342  
IS-DCC(3) 1.516  97.77%  -6.109  4.073  16.656  58.49%  -66.874  0.381  
IS-DCC(4) 1.581  97.68% 0.09% -6.293  3.890  16.856  57.99% 0.50% -67.670  -0.414  
IS-DCC(5) 1.561  97.71% 0.07% -6.263  3.919       
 HEATING OIL  (RC=0.097*) PLATINUM  (RC=0.039**) 
Unhedged 43.578      41.813      
OLS 1.989  95.43% 0.74% -8.070   3.794  90.93% 3.50% -15.445   
DCC 2.110  95.16% 1.01% -8.466  -0.397  2.469  94.10% 0.33% -9.977  5.468  
IS-DCC(2) 1.781  95.91% 0.26% -7.128  0.942  2.407  94.24% 0.19% -9.770  5.675  
IS-DCC(3) 1.669  96.17%  -6.694  1.376  2.329  94.43%  -9.404  6.041  
IS-DCC(4) 1.667  96.17% -0.0029% -6.699  1.371  2.334  94.42% 0.01% -9.443  6.002  
IS-DCC(5) 1.677  96.15% 0.02% -6.739  1.331       

Note:     1. Percentage variance reductions are calculated as the differences of variance of unhedged position and estimated variance of alterative models over variance of unhedged position 
multiplied by 100. 

2. Improvement of  3DCCIS   over other hedging strategies is defined as the difference of the percentage variance reduction of  3DCCIS   and the percentage variance 

reduction of alternative hedging strategies 
3. Expected weekly utility is calculated based on equation (32) 
4. Utility gains of dynamic hedging models over OLS are defined as the differences of the expected utilities of alternative dynamic models and the expected utility of OLS.   
5. RC stands for the White’s reality check p-value testing the null that no improvement of the best DCCIS   over OLS. *, ** and *** indicate significance at the 10% level, 5% 

level and 1% level, respectively.  
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Table IV 

Diebold-Mariano-West Test Statistics of No Superiority of Unrestricted IS-DCC model over Its Nested model. Full Sample 
Period (from January 2008 to December 2008).  

 

 WHEAT CORN COCOA COFFEE 
CRUDE  

OIL 
NATURAL 

GAS 
HEATING 

OIL PLATINUM
IS-DCC(2)  vs. DCC 0.852 1.464* 0.284 -0.429 1.344* 0.533 1.122* 0.209 
IS-DCC(3)  vs. IS-DCC(2) 1.315* 0.598 1.116** 1.763** 1.235* 0.082 1.048 0.464 
IS-DCC(4)  vs. IS-DCC(3) NA 2.740*** NA -1.269* -0.320 -1.259* 0.026 -0.316 
IS-DCC(5)  vs. IS-DCC(4) NA -0.143 NA NA 0.188 NA -0.889 NA 
IS-DCC(3)  vs. DCC 1.462** 1.304* 1.013* 1.164* 1.549** 0.501 1.114* 0.800 

Note:     1.      The DMW statistic is shown in equation (36) with the adjusted critical values for nested models tabulated in 
McCracken (2007). 

2. The RN /  ratio is 0.06 and the number of additional estimated parameters for )(iDCCIS  ,  i=2,3,4 

and 5 are four, six, eight, and ten, respectively. The critical values are tabulated for 0/ RN  and 0.1, and 

we construct the values for 06.0/ RN  by interpolation. 
3. *, ** and *** indicate significance at the 10% level, 5% level and 1% level, respectively. 
4. NA stands for not available since the likelihood value does not increase significantly when the number of 

states is further increased.  
 
 

Table V 
Diebold-Mariano-West Test Statistics of No Superiority of IS-DCC(3) and IS-DCC(2) over MS-DCC Model  

 

 WHEAT CORN COCOA COFFEE 
CRUDE  

OIL 
NATURAL 

GAS 
HEATING 

OIL PLATINUM

Variance of IS-DCC(2) hedging 8.707 1.331 10.934 4.102 1.611 16.668 1.781 2.407 

Variance of IS-DCC(3) hedging 8.039 1.280  10.258  3.892  68.87  1.516  16.656  1.669  2.329  

Variance of MS-DCC hedging 12.043  1.464  10.195  3.917  1.832  20.171  2.265  2.352  

DMW test of no superiority of 
IS-DCC(2) over MS-DCC 1.526* 0.884  -0.656  -0.569  0.833  1.962** 1.192  -0.166  

DMW test of no superiority of 
IS-DCC(3) over MS-DCC 1.839** 1.000  0.032  0.173  0.954  1.939** 1.167  0.117  

Note:     1.      Since DCCMS   is not nested within the DCCIS   model, regular DMW critical values are 
applied. 

2. For one-sided test, the null that DCCMS   is not outperformed by DCCIS  at the 5% level is 

rejected if 645.1DM .   
3. *, ** and *** indicate significance at the 10% level, 5% level and 1% level, respectively. 
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Table VI 
Out-of-Sample Hedging Effectiveness, Post-2000 

 

 

Variance of 
Hedged 

Portfolio Return 

Percentage 
Variance 

Reduction1

Improvement of 
Best IS-DCC over 

Other model2 

Expected 
Weekly 
Utility3 

Utility Gain of 
Dynamic Hedging 
Models over OLS4

Variance of 
Hedged 

Portfolio Return

Percentage 
Variance 

Reduction1

Improvement of 
Best IS-DCC over 

Other model2 

Expected 
Weekly 
Utility3 

Utility Gain of 
Dynamic Hedging 
Models over OLS4 

 WHEAT  (RC=0.905)5 CORN   (RC=0.075*) 
Unhedged 59.674      52.052      
OLS 11.461  80.79% 1.82% -46.000   1.937  96.28% 0.81% -7.772   
DCC 17.803  70.17% 12.45% -70.896  -24.896  1.548  97.03% 0.06% -5.988  1.784  
IS-DCC(2) 10.376  82.61%  -41.223  4.777  1.516  97.09%  -5.871  1.901  
IS-DCC(3) 10.387  82.59% 0.02% -41.260  4.741  1.551  97.02% 0.07% -6.006  1.765  
 COCOA   (RC=0.423) COFFEE   (RC=0.975) 
Unhedged 26.518      11.435      
OLS 10.448  60.60% 0.36% -41.782   3.832  66.48% -0.65% -15.259   
DCC 10.393  60.81% 0.15% -41.532  0.251  3.949  65.46% 0.37% -15.677  -0.418  
IS-DCC(2) 10.352  60.96%  -41.369  0.413  3.907  65.83%  -15.497  -0.238  
IS-DCC(3) 10.493  60.43% 0.53% -41.921  -0.139  3.964  65.33% 0.50% -15.741  -0.482  
 CRUDE OIL   (RC=0.004***) NATURAL GAS   (RC=0.005***) 
Unhedged 68.080      40.122      
OLS 2.490  96.34% 1.46% -9.988   16.861  57.98% 0.17% -67.524   
DCC 2.421  96.44% 1.36% -9.753  0.234  16.993  57.65% 0.51% -68.174  -0.650  
IS-DCC(2) 1.672  97.54% 0.26% -6.690  3.298  16.790  58.15%  -67.407  0.117  
IS-DCC(3) 1.896  97.22% 0.59% -7.538  2.450  17.000  57.63% 0.52% -68.206  -0.683  
IS-DCC(4) 1.496  97.80%  -5.989  3.999  17.109  57.36% 0.79% -68.642  -1.118  
 HEATING OIL   (RC=0.646) PLATINUM   (RC=0.043**) 
Unhedged 43.578      41.813      
OLS 2.171  95.02% 0.08% -8.769   4.627  88.93% 5.16% -18.821   
DCC 2.827  93.51% 1.59% -11.169  -2.400  2.659  93.64% 0.46% -10.631  8.190  
IS-DCC(2) 2.153  95.06% 0.04% -8.541  0.228  2.495  94.03% 0.06% -10.015  8.806  
IS-DCC(3) 2.136  95.10%  -8.471  0.297  2.468  94.10%  -9.924  8.897  
IS-DCC(4)      2.578  93.83% 0.26% -10.349  8.472  

Note:     1. Percentage variance reductions are calculated as the differences of variance of unhedged position and estimated variance of alterative models over variance of unhedged position 
multiplied by 100. 

2. Improvement of Best DCCIS   over other hedging strategies is defined as the difference of the percentage variance reduction of  best DCCIS   and the percentage 
variance reduction of alternative hedging strategies 

3. Expected weekly utility is calculated based on equation (32) 
4. Utility gains of dynamic hedging models over OLS are defined as the differences of the expected utilities of alternative dynamic models and the expected utility of OLS.   
5. RC stands for the White’s reality check p-value testing the null that no improvement of the best DCCIS   over OLS. *, ** and *** indicate significance at the 10% level, 5% 

level and 1% level, respectively.  
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Table VII 
Out-of-Sample Hedging Effectiveness, Pre-2000 

 

 

Variance of 
Hedged 

Portfolio Return 

Percentage 
Variance 

Reduction1

Improvement of 
Best IS-DCC over 

Other model2 

Expected 
Weekly 
Utility3 

Utility Gain of 
Dynamic Hedging 
Models over OLS4

Variance of 
Hedged 

Portfolio Return

Percentage 
Variance 

Reduction1

Improvement of 
Best IS-DCC over 

Other model2 

Expected 
Weekly 
Utility3 

Utility Gain of 
Dynamic Hedging 
Models over OLS4 

 WHEAT  (RC=0.775)5 CORN   (RC=0.029**) 
Unhedged 9.906      14.738      
OLS 3.511  64.55% -0.65% -14.250   3.373  77.11% 3.36% -13.556   
DCC 3.761  62.03% 1.88% -15.238  -0.988  2.967  79.87% 0.60% -11.914  1.642  
IS-DCC(2) 3.677  62.88% 1.03% -14.881  -0.631  2.914  80.23% 0.24% -11.682  1.874  
IS-DCC(3) 3.575  63.91%  -14.498  -0.248  3.033  79.42% 1.05% -12.157  1.399  
IS-DCC(4)      2.878  80.47%  -11.538  2.018  
 COCOA   (RC=0.113) COFFEE   (RC=0.150) 
Unhedged 20.227      60.153      
OLS 15.077  25.46% 23.15% -61.081   1.823  96.97% 0.78% -7.315   
DCC 10.395  48.61%  -41.912  19.170  1.366  97.73% 0.02% -5.498  1.818  
IS-DCC(2) 10.751  46.85% 1.76% -43.417  17.664  1.365  97.73% 0.02% -5.507  1.808  
IS-DCC(3) 10.638  47.41% 1.21% -42.865  18.216  1.353  97.75%  -5.420  1.896  
IS-DCC(4)      1.456  97.58% 0.17% -5.848  1.468  
 CRUDE OIL   (RC=0.378) NATURAL GAS  (RC=0.196) 
Unhedged 23.444      56.666      
OLS 0.563  97.60% 0.04% -2.164   15.482  72.68% 3.66% -61.764   
DCC 0.621  97.35% 0.28% -2.448  -0.284  15.118  73.32% 3.02% -60.090  1.675  
IS-DCC(2) 0.568  97.58% 0.06% -2.217  -0.053  13.408  76.34%  -53.302  8.463  
IS-DCC(3) 0.582  97.52% 0.12% -2.270  -0.106  15.195  73.18% 3.15% -60.409  1.356  
IS-DCC(4) 0.555  97.63%  -2.141  0.023       
IS-DCC(5) 0.571  97.56% 0.07% -2.255  -0.091       
 HEATING OIL   (RC=0.932) PLATINUM   (RC=0.322) 
Unhedged 22.917      5.321      
OLS 1.333  94.18% -0.40% -5.215   1.521  71.41% 0.21% -6.085   
DCC 1.652  92.79% 1.00% -6.624  -1.410  1.522  71.40% 0.22% -5.950  0.135  
IS-DCC(2) 1.508  93.42% 0.37% -6.013  -0.799  1.514  71.55% 0.07% -5.913  0.172  
IS-DCC(3) 1.423  93.79%  -5.656  -0.441  1.510  71.62%  -6.041  0.044  
IS-DCC(4) 1.677  92.68% 1.11% -6.732  -1.518       

Note:     1. Percentage variance reductions are calculated as the differences of variance of unhedged position and estimated variance of alterative models over variance of unhedged position 
multiplied by 100. 

2. Improvement of Best DCCIS   over other hedging strategies is defined as the difference of the percentage variance reduction of  best DCCIS   and the percentage 
variance reduction of alternative hedging strategies 

3. Expected weekly utility is calculated based on equation (32) 
4. Utility gains of dynamic hedging models over OLS are defined as the differences of the expected utilities of alternative dynamic models and the expected utility of OLS.   
5. RC stands for the White’s reality check p-value testing the null that no improvement of the best DCCIS   over OLS. *, ** and *** indicate significance at the 10% level, 5% 

level and 1% level, respectively.  
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Table VIII 

Diebold-Mariano-West Test Statistics of No Superiority of Unrestricted IS-DCC model over Its Nested models. Two Sub-
sample Periods.  

 

 WHEAT CORN COCOA COFFEE 
CRUDE  

OIL 
NATURAL 

GAS 
HEATING 

OIL PLATINUM
 Post-2000 
IS-DCC(2)  vs. DCC 1.471** 0.783  -0.060  0.727  1.393** -0.987* 1.682** 1.793** 
IS-DCC(3)  vs. IS-DCC(2) -0.461 -0.744  -1.037* -1.095* -0.575  0.506  0.947* 0.240  
IS-DCC(4)  vs. IS-DCC(3) NA NA NA NA 0.910* -0.545  NA -1.062* 
BEST IS-DCC  vs. DCC 1.471** 0.783  -0.060  0.727  1.445*** -0.987* 1.704** 1.406** 
 Pre-2000 
IS-DCC(2)  vs. DCC 2.698*** 0.300 -0.854 -0.008 0.951 0.889 1.548*** 0.994* 
IS-DCC(3)  vs. IS-DCC(2) -0.599 -0.553 0.464 0.723 -0.818 -0.915* 2.563*** -0.240 
IS-DCC(4 ) vs. IS-DCC(3) NA 1.575** NA -1.262** 0.990* NA NA NA 
IS-DCC(5)  vs. IS-DCC(4) NA NA NA NA -0.243 NA NA NA 
BEST IS-DCC  vs. DCC 1.809* 0.343  -0.926* 0.338  0.803  0.889  1.933*** 0.640  

Note:     1.      The DMW statistic is shown in equation (36) with the adjusted critical values for nested models tabulated in 
McCracken (2007). 

2. The RN /  ratio is 0.125 and the number of additional estimated parameters for )(iDCCIS  ,  i=2,3,4 

and 5 are four, six, eight, and ten, respectively. The critical values are tabulated for 1.0/ RN  and 0.2, 

and we construct the values for 125.0/ RN  by interpolation. 
3. *, ** and *** indicate significance at the 10% level, 5% level and 1% level, respectively. 
4. NA stands for not available since the likelihood value does not increase significantly when the number of 

states is further increased.  

 



 38

Figures 

0 100 200 300 400 500 600 700 800 900
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

DCC and IS-DCC(3) Hedge Ratios

 

 

OLS

DCC

IS-DCC(3)

 
Figure 1 DCC and IS-DCC(3) Hedge Ratios for Wheat  
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Figure 2 Correlations in Each Regime for Wheat 
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Figure 3 Regime Probability of being in State 1 for Wheat 
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Figure 4 Regime Probability of being in State 2 for Wheat 
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Figure 5 Regime Probability of being in State 3 for Wheat 
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Figure 6 DCC and IS-DCC(5) Hedge Ratios for Corn  
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Figure 7 Correlations in state1, state2, and state 3 for Corn 

 



 40

500 550 600 650 700 750 800 850 900
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

State Dependent Correlation

 

 

State 5
Crrelation

State 4
Correlation

 
Figure 8 Correlations in state4 and state 5 for Corn 
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Figure 9  Regime Probability of being in State 1 for Corn 
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Figure 10 Regime Probability of being in State 2 for Corn 
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Figure 11 Regime Probability of being in State 3 for Corn 
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Figure 12 Regime Probability of being in State 4 for Corn 
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Figure 13 Regime Probability of being in State 5 for Corn 
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Appendix A. Problems of Path-dependency and Caporin and Billio’s Recombining 

Method  

In this appendix, the problem of path-dependency in covariance process and the 

problem of Caporin and Billio’s recombining method will be addressed. Markov regime 

switching GARCH models are essentially intractable and impossible to estimate due to 

the dependence of the conditional covariance matrix on the entire past history of the data. 

This problem can be solved via Caporin and Billio’s recombining method which is 

illustrated with the following figure 

 

 

 

 

 

 

 

 

 

 

Without recombining, the tree will diverge and number of cases to be considered 

will be infinity and make the model intractable. With Caporin and Billio’s recombining 

procedure, each conditional covariance depends only on the current regimes, not on the 

entire past history of the process and the estimation of the model will be feasible. Caporin 

and Billio’s recombining method, however, is computational intensive due to the 

 21 ts  

 21 ts  

 11 ts  

 11 ts  

2state  

1state  

1ttime  ttime 1ttime

1
1tQ  

( 1
1tE ) 

)(E2
1

2
1





t

tQ
 

1,1
tQ

2,1
tQ

1,2
tQ

2,2
tQ

1
tQ

2
tQ

1,1
1tQ  

2,1
1tQ  

1,2
1tQ

2,2
1tQ  

1
1tQ

2
1tQ



 42

requirement of taking expectations in each time step. For instance, if the number of states 

is five, there will be 25 sQ  in each time step and one has to collapse these 25 sQ  into 

5 sQ  by taking expectations to make the model tractable. The correlation matrixes are 

collapsed by taking expectations based on equation (10). In addition to the problem of 

computational intensive, it is possible that the covariance of one regime will still be 

affected by shocks even if 1  in that regime is zero. To see this consider equation (12) 

rewritten below:  

     i
i

i






  tt EQQ
1

1
21

1
221 11  .   

A state-dependent version of equation (12) is given by  

              i
i

t
i

ttttt ssssss 





  tt EQQ
1

1
21

1
221 11  ,  (A1) 

where ts  is the state variable. Suppose that   011 ts , this implies that all previous 

shocks itE ,  ,,2,1 i should have a zero impact on tQ  in state one. Although there is 

no effect of shocks at time 1t  ( 1tE ) on the covariance at time t  at regime one, namely, 

1
tQ , it could affects 2

tQ  through the channel of 2,1
tQ  and therefore affects 1

itQ  ,  

 ,,2,1 i  because of recombining. This contradicts to the fact that 

  011 ts implies a zero impact for all previous shocks in the regime one. The 

recombining procedure causes difficulty in interpreting the meaning of system parameters 

and Hass, et. al. (2004) refer this as the analytical intractability problem.  
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