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Valuation and Analysis of Basket Credit Linked Notes 

with Issuer Default Risk 
 

Abstract 

This paper explores a reasonable coupon rate for basket credit linked notes (CLN) 

with issuer default risk. Based on the one factor Gaussian copula model, this paper 

proposes three methods for incorporating issuer default into basket CLN pricing. 

Numerical results indicate that issuer default risk impacts basket CLN coupon rate. 

Furthermore, the coupon rate differs with changes in correlation structure among the 

three methods. Finally, one of the three methods is identified as the most suitable. 

 

Keywords: Basket credit linked notes, issuer default risk, default correlation, factor 

Gaussian copula, Monte Carlo simulation. 
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1. Introduction 

A credit linked note (CLN) is a note for which the price or coupon is linked to 

the credit event of the reference entity (obligation) (Anson et al., 2004; Das, 2000; 

Fabozzi et al., 2007). A CLN linked to multiple reference entities is called a basket 

CLN. Such a CLN can be structured by a note and a basket default swap (BDS). The 

conventional form of basket CLN is the k th-to-default CLN. The CLN holder (the 

protection seller) pays the notional principal to the CLN issuer (the protection buyer) 

at the start of the contract and receives the coupon payments until either the k th 

default or the contract matures, whichever occurs earlier. If the k th default occurs 

before contract maturity, the CLN holder receives the recovered value of the reference 

entity from the CLN issuer. Otherwise, the CLN holder receives the notional principal 

back on contract maturity. 

In derivative markets, the issuer default risk is attracting considerable attention 

because of the recent financial turmoil and collapses of large financial institutions. If 

the CLN issuer defaults, the CLN holder will not receive the recovered value of the 

reference entity as the credit event happens, nor the notional amount at the contract 

maturity. The coupon payments also ceases due to the issuer default. The issuer 

default results in a large loss. Thus it is important to incorporate issuer default risk in 

basket CLN pricing to obtain a reasonable coupon rate. 

Two main approaches exist to modeling the default risk in the literature: the 

structural and reduced form models. The structural model was developed by Merton 

(1974), and defined credit events as occurring when firm asset value falls below firm 

debt. The reduced form model, also known as the intensity model, was developed by 

Jarrow and Turnbull (1995). This model views the credit event as an unexpected 

exogenous stochastic event and uses market data to estimate the default risk. 
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Hull and White (2000) provided a methodology for valuing credit default swap 

(CDS) without counterparty default risk when the payoff is contingent on the default 

of a single reference entity. Hull and White (2001) developed a model of default 

correlations between different corporate or sovereign entities. The model of Hull and 

White is an extension of the structural model, sets a credit index variable for each 

reference entity, and selects correlated diffusion processes for the credit indexes. Their 

model defines default as the credit index falling below the predetermined default 

barriers. Monte Carlo simulation is used to calculate the vanilla CDS and BDS spread 

given the possibility of issuer default. Hui and Lo (2002) developed a model to price 

the single-name CLN with issuer default risk using the framework of Merton’s model. 

They demonstrated that the credit spreads of a CLN increase non-linearly with 

decreasing correlation between the reference entity and the issuer. 

Pricing multi-name credit derivatives requires a joint distribution model of the  

default times. However, whether using the structural or reduced form models, valuing 

the multi-name credit derivative is computationally complex. Thus the copula 

function (Sklar, 1959), also known as the dependence function, which simplifies the 

estimation of the joint distribution, recently has been widely used to price the 

multi-name credit derivatives. Li (1999, 2000) first introduced the copula function to 

deal with the dependence structure in multi-name credit derivative pricing. He 

assumed the default times of reference entities to be Poisson processed, and set the 

dependence structure as a Gaussian copula function. Finally, Li performed Monte 

Carlo simulation to obtain the default times. Mashal and Naldi (2003) applied Li’s 

method to analyze how the default probabilities of the protection sellers and buyers 

affect BDS spread. 

Calculating default times using the copula method is fairly easy. However, the 
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computational complexity of the Monte Carlo simulation with Gaussian copula 

increases with number of reference entities. The factor copula method, which makes 

the credit event conditional on independent state variables, was introduced to deal 

with these problems. Hull and White (2004) employed a multi-factor copula model to 

price the k th-to-default swap and collateralized debt obligation (CDO). Moreover, 

Laurent and Gregory (2005) proposed one factor Gaussian copula to simplify the 

dependence structure of reference entities, and applied this approach to price BDS and 

CDO.  

This paper focuses on how to incorporate issuer default risk into the basket CLN 

pricing methods with the one factor Gaussian copula model. Three different methods 

are proposed and numerical analysis is performed to compare them. The remainder of 

this paper is organized as follows. Section 2 briefly reviews the one factor Gaussian 

copula model. Section 3 then describes the proposed methods for incorporating issuer 

credit event into basket CLN pricing. Subsequently, Section 4 presents the results of 

numerical analysis and compares the methods. Conclusions are finally drawn in 

Section 5. 

 

2. One Factor Gaussian Copula 

Copula is a function which links the univariate marginal distributions to their full 

multivariate distribution and can be expressed as follows: 

 

( ) ( )NNN uUuUuUuuuC ≤≤≤= ,,,Pr,,, 221121 KK  ( 1 ) 

 

where ( ) NiUUi ,,2,1,1,0~ K= . Sklar (1959) proved that if ( )NxxxF ,,, 21 K  is a 

joint multivariate distribution with univariate marginal distributions 
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( )ii xF Ni ,,2,1, K= , there exists a copula function such that: 

 

( ) ( ) ( ) ( )( )NNN xFxFxFCxxxF ,,,,,, 221121 KK =  ( 2 ) 

 

If each ( )ii xF  is continuous, then the copula function is unique. The definition of a 

Gaussian copula is as follows: 

 

( ) ( ) ( ) ( )( )nRn
Ga uuuuuuC 1

2
1

1
1

21 ,,,,,, −−−Φ= φφφ KK  ( 3 ) 

 

where RΦ  denotes a multivariate cumulative normal (Gaussian) distribution, R  

represents the correlation coefficient matrix, and 1−φ  is the inverse function of one 

dimensional cumulative normal distribution. 

Using the reduced form model, each reference entity default follows a Poisson 

process. Suppose the credit portfolio contains N reference entities, and the default 

times are Nτττ ,,, 21 K , respectively. iτ  is a positive random variable with 

distribution: 

 

( ) ( ) NietPtP t
ii

i ,,2,1,1 K==≤−=> −λττ  ( 4 ) 

 

where iλ  is the hazard rate of the reference entity i . The cumulative default 

probability before time t  is: 

 

( ) ( ) NietPtF t
ii

i ,,2,1,1 K=−=≤= −λτ  ( 5 ) 
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Because ( ) ( )1,0~ UtFi , applying the Gaussian copula obtains the multivariate joint 

distribution of default times, as follows: 

 

( ) ( )( ) ( )( ) ( )( )( )NNRN FFFF τφτφτφτττ 1
22

1
11

1
21 ,,,,,, −−−Φ= KK  ( 6 ) 

 

In the one factor model, the default times of all reference entities depend on a 

common factor Y , and firm specific risk factors iε , Ni ,,2,1 K= . Y  and iε  are 

independent standard normal variables. Based on the above setting, a new Gaussian 

vector ),,,( 21 NXXX K  can be created via Cholesky decomposition, as follows: 

  

NiYX iiii ,,2,1,1 2
K=−+= ερρ  ( 7 ) 

 

where iρ  denotes the correlation coefficient between the new Gaussian variable iX  

and the common factor Y . One factor Gaussian copula model with constant pairwise 

correlations has become the standard market model. Let ρρ =i  in Eq. (7), then the 

constant pairwise correlations ji,ρ  will be 2ρ . 

Let ( )( )11
1

1 τφ FX −= , ( )( )22
1

2 τφ FX −= , K , ( )( )NNN FX τφ 1−= , in which case 

( ) ( )111 XF φτ = , ( ) ( )222 XF φτ = , K , ( ) ( )NNN XF φτ = . By mapping the cumulative 

normal distribution between default time iτ  and Gaussian variable iX , we can 

simulate the default time of the reference entity i  using the following equation: 

 

( )( ) ( )( )
Ni

X
XF

i

i
iii ,,2,1,

1ln1 K=
−−

== −

λ
φ

φτ  ( 8 ) 
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3. Proposed Methods 

 This paper proposes three possible methods of incorporating issuer default risk 

into basket CLN pricing using the one factor Gaussian copula model. For comparison, 

the method without issuer default risk is named method A. Meanwhile, the three 

proposed methods with issuer default risk are named methods B, C and D, 

respectively. Assuming that the normal random variable corresponding to the default 

time of each underlying reference entity (abbreviated here as the underlying variable) 

is iX , the normal random variable corresponding to the issuer default time 

(abbreviated as the issuer variable) is Z , and the common factor is Y . The different 

structures of methods A to D are listed below and shown in Figure 1. Table 1 

summarizes the parameters of these four methods.  

Method A: Issuer default risk is not considered. The correlation between each iX  

and Y  is ρ , as shown in Figure 1 (A). 

Method B: Issuer default risk is considered. The correlation between each iX  and 

Y  is ρ , but Z  is independent of iX  and Y , as shown in Figure 1 (B). 

Method C: Issuer default risk is considered. The correlation between each iX , Z  

and Y  is ρ , as shown in Figure 1 (C). 

Method D: Issuer default risk is considered, but the common factor Y  is replaced by 

the issuer variable Z . The correlation between each iX  and Z  is ρ , 

as shown in Figure 1 (D). 

 

[Insert Figure 1 about here] 

 [Insert Table 1 about here] 
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3.1 Pricing basket CLN without Issuer Default Risk 

Assume a k th-to-default CLN involving N  reference entities which the 

notional principal of each reference entity is one dollar. The coupon rate is c . The 

coupon (the notional principal multiplied by the coupon rate) is paid annually, and the 

payment dates are Titi ,,2,1, K= . The maturity date of the basket CLN is Tt . 

Furthermore, kτ  is the k th default time, and Nτττ <<< L21 . Moreover, kδ  is 

the recovery rate of the k th default reference entity. Thus kδ  denotes the 

redemption proceeds (the notional principal multiplied by the recovery rate) which the 

issuer pays to the basket CLN holder on the k th default. The discount rate is %r . 

Finally, Q  denotes the risk-neutral probability measure, and )(⋅I  represents an 

indicator function. The value of a k th-to-default CLN can be represented as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
>×+≤××+<×= −−

=

−∑ )()()(
1

Tk
rt

Tk
r

k

T

i
ki

rtQ tIetIetIecECLN Tki ττδτ τ  ( 9 ) 

 

Let the above equation equals one, the equation can be rewritten as: 

 

[ ])()(1

)(
1

Tk
rt

Tk
r

k
Q

T

i
ki

rtQ

tIetIeE

tIeEc

Tk

i

>×−≤××−=

⎥
⎦

⎤
⎢
⎣

⎡
<×

−−

=

−∑
ττδ

τ

τ

 ( 10 ) 

 

Rearranging Eq. (10) can yield the fair coupon rate at the start of the CLN as follows: 
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By using W  runs of Monte Carlo simulation to price the basket CLN, the 

numerator of Eq. (11) is: 

 

[ ]∑
=

−− >×−≤××−
W

s
T

s
k

rt
T

s
k

rs
k tIetIe

W
T

s
k

1
)()(11 ττδ τ  ( 12 ) 

 

where s
kδ  denotes the recovery rate of the k th default reference entity at the s th 

simulation, and s
kτ  represents the k th default time at the s th simulation. The 

denominator of Eq. (11) is: 

 

∑ ∑
= =

−
⎥
⎦

⎤
⎢
⎣

⎡
<

W

s

T

i

s
ki

rt tIe
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Therefore, the fair value of the coupon rate c  is: 
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3.2 Pricing basket CLN with Issuer Default Risk 

In situations involving issuer default risk, it is necessary to consider whether the 

issuer defaults before or after the k th default. This paper defines sτ̂  as the issuer 
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default time at the s th simulation and δ̂  as the issuer recovery rate. The CLN 

holder gets back the recovered value of the reference obligation if the k th default 

occurs before both the issuer default time sτ̂  and the maturity date Tt . If the issuer 

defaults before the k th default and the maturity date, the issuer will not provide the 

CLN holder with the redemption proceeds and stop the coupon payments. In this 

situation, the notional principal multiplied by the issuer recovery rate is returned to 

the CLN holder. To obtain all of the notional principal back, both the k th default 

time and the issuer default time must be later than the contract maturity date. Thus, 

the value of a k th-to-default CLN with issuer default risk must be modified as 

follows: 

 

( ) ( )

( ) ( ) ⎥
⎥
⎥

⎦
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 ( 15 ) 

 

The definitions of s
kδ  and s

kτ  are as in Eq. (12). The fair value of the coupon rate 

c  with issuer default risk is: 
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 ( 16 ) 

 

4. Numerical Analysis 

This paper adopts a five-year basket CLN with three reference entities as an 

example of numerical analysis. Assume all three reference entities have notional 
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principal one dollar, hazard rate 5% and recovery rate 30%. Furthermore, assume the 

coupon is paid annually, the hazard rate and recovery rate of the issuer is 1% and 30%, 

respectively. Discount rates are obtained by bootstrapping from the government bond 

data. Sixty-thousand runs of Monte Carlo simulation are executed to calculate the 

coupon rates for methods A to D, and the results are shown in Table 2 to Table 5 and 

Figure 2. 

 

[Insert Table 2 about here] 

[Insert Table 3 about here] 

[Insert Table 4 about here] 

[Insert Table 5 about here] 

[Insert Figure 2 about here] 

 

The correlation coefficient ρ  represents the correlation between each reference 

entity and the common factor (or the issuer default risk). The correlation between the 

reference entities iX  and jX , which equals 2ρ , is positively correlated to ρ . 

As shown in Figure 2 (A), the coupon rate of the first-to-default ( k =1) CLN is 

negatively correlated with ρ , because the probability of the first-to-default 

occurring increases as ρ  decreases. Conversely, as shown in Figure 2 (B) and 

Figure 2 (C), the coupon rate of the second ( k =2) and third-to-default ( k =3) CLN is 

positively correlated with ρ , because the probability of the joint default increases 

as ρ  increases. 

Figure 2 also shows that the coupon rates with issuer default risk in methods B to 

D are higher than those without issuer default risk in method A. Furthermore, when 
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the correlation coefficient is positive, the coupon rates in method D are lower than 

those in methods B and C. Meanwhile, when the correlation coefficient is negative, 

the coupon rates in method D are higher than those in methods B and C. Thus the 

curves of coupon rates in method D are asymmetric. 

The following explores the above phenomenon. When the reference entity 

defaults, the CLN holder receives the recovered value of the reference entity and loses 

the coupon incomes after the reference entity credit event. The issuer default exhibits 

a similar effect. When the issuer defaults, the CLN holder receives the recovered 

value of the CLN and loses the coupon incomes after the issuer default event. The 

issuer default may occur before or after the reference entity default. When the issuer 

default occurs after the reference entity default, the contract is terminated at the 

default time of the reference entity and the CLN holder receives the recovered value 

and loses the following coupon income. Thus the loss of a CLN with issuer default 

risk will be identical to that without issuer default risk. On the other hand, when the 

issuer default is earlier than the reference entity default, the contract is terminated 

simultaneously with the issuer default. Suppose the recovery rates of the issuer and 

the reference entity are identical. The CLN holder then receives the same recovered 

value as when the reference entity defaults first. However, the CLN holder not only 

loses the coupon incomes after the reference entity default time, but also those 

between the issuer and reference entity default time. Thus, the loss of a CLN with 

issuer default risk exceeds that without issuer default risk. This situation causes the 

total risk of the CLN with issuer default risk to be higher than that without issuer 

default risk. Therefore the coupon rate of the CLN with issuer default risk is higher 

than that without issuer default risk. 

When the issuer and reference entitiy default are highly positively correlated, 
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their movements are almost identical, making the defaults times of the issuer and 

reference entities close together. As the correlation approaches one, the joint default 

of the issuer and the reference entity become more likely and the default times 

become closer together. In extreme cases, for example when the correlation 

coefficient is one, the issuer will default simultaneously with the reference entity 

default. Thus the issuer default does not influence the total risk of the CLN. On the 

other hand, as the correlation approaches negative one, the default times become more 

dispersive. Other things being equal, the impact of issuer default risk decreases with 

increasing closeness of default times. Therefore, the differences of the coupon rate 

between the with and without issuer default risk situations reduce as the correlation 

approaches one. The default correlation between the reference entities and the issuer 

is zero in method B, 2ρ  in method C, and ρ  in method D, respectively. When the 

correlation is positive, i.e. when 10 ≤≤ ρ , then 10 2 ≤≤≤ ρρ . Thus, the coupon 

rates follow the ranking method B > method C > method D as shown in Figure 2. 

When the correlation is negative, i.e. when 01 ≤≤− ρ , then 10 2 ≤≤≤ ρρ . Thus, 

the coupon rates follow the ranking method D > method B > method C. Moreover, in 

methods B and C the coupon rate curves are symmetric. However, in method D the 

coupon rate curves are asymmetric, depending on whether the default correlation is 

positive or negative. Therefore, using the issuer variable as the common factor in the 

factor copula framework will include more information about the default correlation 

between the reference entities and the issuer. 

 

5. Conclusions 

To obtain the most reasonable coupon rate, issuer default risk in basket CLN 

pricing must be considered. This paper proposes three methods for incorporating the 
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issuer default risk into basket CLN pricing using one factor Gaussian copula model. 

The analytical results show that the coupon rates obtained by all three proposed 

methods with issuer default risk are higher than the method without issuer default risk. 

Thus issuer default risk increases the basket CLN coupon rate. Furthermore, among 

the proposed methods, because method D directly takes account of the default 

correlation between the reference entities and the issuer, the positive or negative effect 

of the default correlation is fully reflected in the coupon rates. Therefore, method D is 

the most preferable model for pricing basket CLN with issuer default risk. 
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Table 1 Summary of the parameters of the four methods. 

Parameters Setting 
（Correlation with underlying variable iX ） 
Common 

Factor 
Issuer 

Variable 
Underlying 

Variable 
Method 

Is issuer 
default risk 
considered? 

Y  Z  jX  

A N ρ  Not considered 2ρ  
B Y ρ  Independent 2ρ  
C Y ρ  2ρ  2ρ  
D Y Not considered ρ  2ρ  
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Table 2 Coupon rates under various correlation coefficients in method A ( k =1: 

first-to-default, 2: second-to-default, 3: third-to-default). 

Method A 
ρ  k =1 k =2 k =3 

-0.9 8.0195% 5.2169% 3.5790% 
-0.8 9.2625% 4.9714% 3.0115% 
-0.7 10.2417% 4.7203% 2.6429% 
-0.6 11.0469% 4.4753% 2.3993% 
-0.5 11.7604% 4.2476% 2.2319% 
-0.4 12.3336% 4.0568% 2.1107% 
-0.3 12.7890% 3.8888% 2.0280% 
-0.2 13.1304% 3.7766% 1.9809% 
-0.1 13.3336% 3.6917% 1.9499% 

0 13.3875% 3.6646% 1.9359% 
0.1 13.3547% 3.6833% 1.9470% 
0.2 13.1236% 3.7480% 1.9719% 
0.3 12.7744% 3.8817% 2.0171% 
0.4 12.2933% 4.0242% 2.0883% 
0.5 11.7091% 4.2155% 2.2105% 
0.6 10.9854% 4.4092% 2.3793% 
0.7 10.1941% 4.6447% 2.6279% 
0.8 9.2061% 4.9138% 2.9783% 
0.9 7.9788% 5.1952% 3.5583% 
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Table 3 Coupon rates under various correlation coefficients in method B ( k =1: 

first-to-default, 2: second-to-default, 3: third-to-default). 

Method B 
ρ  k =1 k =2 k =3 

-0.9 8.7558% 5.9139% 4.2528% 
-0.8 10.0115% 5.6654% 3.6828% 
-0.7 10.9992% 5.4107% 3.3111% 
-0.6 11.8112% 5.1587% 3.0658% 
-0.5 12.5292% 4.9317% 2.8982% 
-0.4 13.1138% 4.7378% 2.7792% 
-0.3 13.5773% 4.5695% 2.6958% 
-0.2 13.9227% 4.4569% 2.6480% 
-0.1 14.1276% 4.3697% 2.6164% 

0 14.1785% 4.3412% 2.6020% 
0.1 14.1455% 4.3624% 2.6133% 
0.2 13.9126% 4.4263% 2.6392% 
0.3 13.5598% 4.5618% 2.6843% 
0.4 13.0772% 4.7071% 2.7558% 
0.5 12.4855% 4.8983% 2.8783% 
0.6 11.7559% 5.0926% 3.0476% 
0.7 10.9577% 5.3317% 3.2985% 
0.8 9.9551% 5.6050% 3.6515% 
0.9 8.7173% 5.8949% 4.2371% 
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Table 4 Coupon rates under various correlation coefficients in method C ( k =1: 

first-to-default, 2: second-to-default, 3: third-to-default). 

Method C 
ρ  k =1 k =2 k =3 

-0.9 8.0346% 5.2585% 3.7167% 
-0.8 9.3471% 5.1490% 3.3632% 
-0.7 10.4279% 5.0406% 3.1441% 
-0.6 11.3501% 4.9077% 2.9853% 
-0.5 12.1928% 4.7844% 2.8735% 
-0.4 12.8846% 4.6587% 2.7835% 
-0.3 13.4509% 4.5440% 2.7177% 
-0.2 13.8645% 4.4490% 2.6597% 
-0.1 14.1181% 4.3717% 2.6251% 

0 14.1785% 4.3412% 2.6020% 
0.1 14.1215% 4.3559% 2.6101% 
0.2 13.8336% 4.4025% 2.6320% 
0.3 13.4073% 4.5070% 2.6668% 
0.4 12.8209% 4.5995% 2.7214% 
0.5 12.1252% 4.7249% 2.8231% 
0.6 11.2806% 4.8338% 2.9471% 
0.7 10.3750% 4.9559% 3.1099% 
0.8 9.2802% 5.0873% 3.3144% 
0.9 7.9892% 5.2336% 3.6858% 
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Table 5 Coupon rates under various correlation coefficients in method D ( k =1: 

first-to-default, 2: second-to-default, 3: third-to-default). 

Method D 
ρ  k =1 k =2 k =3 

-0.9 9.1615% 6.1338% 4.3829% 
-0.8 10.5103% 5.8678% 3.7781% 
-0.7 11.5696% 5.5968% 3.3869% 
-0.6 12.4242% 5.3335% 3.1286% 
-0.5 13.1511% 5.0877% 2.9515% 
-0.4 13.6788% 4.8797% 2.8231% 
-0.3 14.0447% 4.6906% 2.7359% 
-0.2 14.2518% 4.5530% 2.6849% 
-0.1 14.2996% 4.4321% 2.6497% 

0 14.1802% 4.3584% 2.6277% 
0.1 13.9761% 4.3244% 2.6298% 
0.2 13.5867% 4.3172% 2.6411% 
0.3 13.0893% 4.3634% 2.6595% 
0.4 12.4911% 4.4004% 2.6870% 
0.5 11.8164% 4.4850% 2.7424% 
0.6 11.0371% 4.5868% 2.8192% 
0.7 10.2099% 4.7318% 2.9414% 
0.8 9.2093% 4.9376% 3.1492% 
0.9 7.9788% 5.1959% 3.5901% 
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Figure 1 Relationships between the variables in methods A to D: (A) method A; (B) 

method B; (C) method C; (D) method D. 
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Figure 2 Coupon rates of the k th-to-default CLN in methods A to D: (A) k =1; (B) 

k =2; (C) k =3. 


