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Abstract
In wake of the currently ongoing financial crisis, how to monitor and track systemic 
risks of financial markets has become the most important task for the practitioners and 
researchers. Due to flourishing innovations of multi-asset-linking complex derivatives 
and the gradually integrated global cross-asset trading networks, a well diversified 
portfolio which can adapt to trends and cycles of capital flows and spot clues of 
systemic risks need be constructed in the conceptual framework of dynamic asset 
allocation (DAA). To support the methodological development of DAA by 
computational inventions, the following steps are suggested. First, a universe of 
attainable assets should be specified and classified. Next, a measure for the distances 
between pairs of assets is to be established. Finally, multidimensional scaling 
techniques are implemented to shape an asset-allocation map as a geometric 
visualization tool for monitoring the changing landscape of the capital market and its 
risk structure of asset allocation. Based on the canonical map, DAA strategies then 
can be easily built by visual senses or quantitative simulations with performances 
being more intuitively and systematically tracked. Empirical results on several major 
markets also revealed the effectiveness and depth of this approach. This approach can 
not only provide a console to implement DAA strategies for constructing portfolios, 
but also open a window to explore the new concept of DAA in the progress of modern 
portfolio theory advancing from capital asset pricing model (CAPM) and arbitrage 
pricing theory (APT).
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1. Introduction

Diversification is the ultimate principle for asset allocation. The elementary part of 
this paper is devoted to provide a quantitative approach for the construction of well 
diversified portfolios. The key is the introduction of the multidimensional scaling 
algorithm while a proper distance measure can be defined. The benefits of 
diversification are also investigated under this scheme. And the technique may also 
initiate a methodology for further exploration of the financial markets.

In the modern portfolio theory of Markowitz (1952, 1959, and 1987) and Sharpe 
(1963, 1964), diversification is generally mentioned in the same breath with the 
implementation of the market portfolio. Measuring the level of diversification thus 
involves only comparisons of the variances or the compositions with the market 
portfolio (Goetzmann and Kumar, 2008). For example, based on random sampling 
and considering the excess volatility relative to an equally weighted index, Campbell 
et al. (2001) inferred that 20 stocks are essentially necessary for the 1963-85 period 
but 50 stocks for the 1986-97 period. Then the diversification puzzle is that average 
investors hold very limited amounts of stocks.

The rise of the exchange traded funds (ETF’s) and index funds in recent years can be 
viewed as the practice of diversification. However, not all of these types of funds are 
managed with full replications. In fact, index tracking can be also carried out through 
sampling (Schoenberg, 2004). And there can be found literatures addressing the 
problem of index tracking with only a small set of stocks, for example, Corielli and 
Marcellino (2005). This clearly contradicts the assertion about diversification from 
the context of the MPT.

In fact, the contradiction comes from the differences between random sampling of 
stocks and active selection with respect to the correlation structure of the market. 
Intuitively and technically, the concept of diversification should be referred to 
“active” investments in securities that are uncorrelated or even negatively correlated. 
With the number of assets being fixed, a portfolio composed of negatively correlated 
assets is certainly better diversified than the one composed of positively correlated 
assets only. And furthermore, since the correlation structure of the market may evolve 
over time (Engle, 2009), the degree of diversification for a portfolio certainly may 
also change temporally.

On the other hand, price comovements among securities in one market generally exist 
(Barberis et al., 2005). This implies that, while considering the correlation between 
two stocks, their correlations with a third stock could also provide information. So on 
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deciding whether a portfolio is well diversified, a universe of securities containing the 
securities selected should be specified a priori.

Thus, to dynamically achieve diversification, what really matter is if the persistency 
of the correlation structure of the market really exists and if an adequate measure of 
correlation between two assets can be found. While the measure is determined, a 
correspondent metric as distance generally can be derived and calculated. Then the 
multi-dimensional scaling (MDS) algorithm can be the natural choice to map all the 
assets into a low-dimension space. Then allocation strategies or asset clustering can 
be more intuitively shaped by the “map”. For example, Groenen and Franses (2000) 
used this approach to explore the time-varying correlations across 17 stock markets.

So a practical procedure for constructing a well diversified portfolio would be as 
follows. First, a universe of assets should be identified. This specifies the largest 
range of assets to be selected. Next, define a measure for the distances between pairs 
of assets. A simple choice may be the standard deviation of the spread of the 
(standardized) returns of assets, which just corresponds to the linear correlation. 
Obviously, more sophisticated measures that help capture the characteristics of 
distribution tails may be also used. Finally, by applying multidimensional scaling or 
other similar techniques a market map can be drawn for constructing allocation 
strategies. This step indeed is a dimension reduction procedure to reduce the n(n-1)/2 
correlations into k-tuple coordinates of n objects.

Once the orientations of the stocks are distinguished, two quantitative criteria are 
proposed and can be applied for the sampling scheme to construct portfolios. Both the 
two criteria and their combinations lead to allocations of geometric symmetry on the 
map.

Several allocation strategies are designed with the map. Datasets from the US, UK, 
Japan and Taiwan from 2004 to the beginning of 2009 are used as examples. With 
fixed number of stocks selected, it is found that the diversified portfolios would not 
necessarily have lower variances of returns. However, these diversified portfolios will 
track the market index more closely and may be more efficient than those ill 
diversified.

The remainder of this paper proceeds as follows. A brief review and implementation 
details about MDS are presented in Section 2; empirical investigations and further 
applications are in Section 3; and Section 5 contains the conclusions.

2. Multi-Dimensional Scaling
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Multidimensional scaling (MDS) is a set of techniques often used in information 
visualization for exploring similarities or dissimilarities in data. With measurements 
of dissimilarity, dij, for the (i,j) pairs of n objects as inputs, this method can be used to 
project these objects into a low dimension space X, the MDS space of dimensionality 
m:

)( : )( Xm
ijij ddf → .

Thus, viewing each stock as one object and taking a proper measure of distance, the 
correlation structure of the market can be easily visualized. It is noted that employing 
MDS to map n stocks into a k-dimension space in fact involves a dimension reduction 
from n(n-1)/2 to n·k and thus also a denoise process. This also echoes to the idea that 
information about correlations between two stocks can be enhanced through the 
networks of all stocks.

2.1 The algorithm

The input for MDS is a distance matrix with element dij to represent the dissimilarities 
between the i-th and j-th objects. The basic properties required for these distances are 
listed as follows:

(Nonnegativity) ijiiii ddd ≤== 0 ,

(Symmetry) jiij dd = ,

(Triangle inequality) kjikij ddd +≤ .

Let n be the number of distinct objects and p be the pre-specified dimensionality of 
the space. The objective of MDS is to find an n×m matrix X whose raw vectors 
represent the coordinates in the new space for each object. A stress function is usually 
used as the object of minimization:
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ijd  represents the distance for the (i, j) pair of objects in X.

4



Note that the stress is a measure of badness of fit. In general, the higher the number of 
objects n, the higher the stress could be. And the higher the dimensionality m, the 
lower the stress will be.

The minimization of the stress generally cannot be carried out algebraically. 
Numerical procedures can be found in many mathematics or statistics software. And it 
should be noted that the MDS solutions are indeed invariant with respect to location 
shifts and rotations since these operations do not alter the distances between pairs of 
points.

2.2 Implementing MDS to the stock markets

It is interesting and tricky to determine how dissimilar two stocks are. A commonly 
acceptable concept may be related to the correlation of the two price returns of the 
stocks. So the simplest way is to view the returns as random variables, real valued 
functions on some specified sample space, and to calculate the standard errors of the 
differences of the two returns.

However, due to that some stocks tend to be more volatile and some others less 
volatile, a standardization procedure should be taken to prevent that volatile stocks are 
always far away others.

For simplicity, in this paper the procedure following the Riskmetrics manual is taken, 
that is, the exponentially weighted moving average model (EWMA) or the IGARCH 
model is used for the variance of the return of stock i at time t:

tititi zhr ,,, = ,

2
1,1,, )1( −− −+= tititi rhh λλ ,

where ri,t represents the return of stock i at time t and hi,t its variance. Then the 
distance dij,t between two stocks at time t would be
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where k is the pre-specified window length.

Although the EWMA approach may seriously ignore some important properties of the 
financial time series and thus many critics arose, it indeed provides as a quick first-
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step and acceptable filter for the unit innovations. The distance measure with the 
standard error of the difference of the returns is also the simplest but easy to 
implement.

Obviously all the setups above for calculating distance measures can be modified. 
Extensions of distance measures such as Lp norm, the difference of joint entropy and 
mutual information, and the Hellinger distance are possible alternatives while specific 
forms of joint distributions are assumed. And prior information such as sectors, large 
or small cap, and PE ratios can be also used in the definitions of distances.

2.3 Clustering securities with MDS: simulation studies

In this  section,  properties of the maps by implementing MDS to time series from 
some simple data generation processes are investigated through simulations. 

First, assume that stock prices processes geometric Brownian motions with constant 
drift, volatility and correlations between each other. It is intuitive that the map will 
look like a circle or an ellipse. Figure 1 illustrates the results for different sizes of n.

Next  suppose that  the  returns  follows a  factor  model  and these  factors  follow an 
AR(1) model, that is,

it

k

j
jtijit

i

Fbr ε+= ∑
= 1

where  Fjt denote the non-correlated risk factors with AR(1) structure,  bij denote the 

factor loadings and εit denote the uncorrelated errors.

For a total number of stocks n = 120, suppose that the first 20 stocks corresponds to 
the first factor only, the second 20 stocks to the first two factors, and so on. That is k1= 
··· = k20=0, k21= ··· = k40=1, k101= ··· = k120=5. In Figure 2, it is seen that these 120 stocks 
are successfully clustered into 6 groups. This essentially demonstrates the ability of 
classification of MDS.

Furthermore, consider the data generated from a GARCH process

ttti hr ε⋅Γ⋅∆⋅=, ,

1,1
2

1,1,0,, −− ++= titiiiti hrh βαα ,

where εt’s are random vectors with standard normal distribution or t distribution, ∆ 
and Γ are n×n matrices designed to produce clustering effect and satisfy δij=1 or -1, 
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0>ijγ , and 12 =∑
j

ijγ . The setting states that there are n risk factors and i-th stock has 

s positive response to the j-th factor while δij=1, and vice versa.

Figure 3a shows a map when there is only one cluster, that is δij=1 for all i and j. The 
left panel corresponds to normally distributed innovations and the right panel t5 

distribution. As expected, it is seen that the points in the right map are more wildly 
spreaded since the t distribution has a fatter tail.

While there are 10 stocks have negative responses and there are two clusters, Figure 
3b shows the results. The 10 stocks are better clustered from the others when the 
innovations are generated from the normal distribution. For the right panel in which 
data are generated from the t distribution, the 10 stocks are then mixed up with other 
stocks. 

The maps with real data from the US and Taiwan in 2008 are shown in Figure 4. Clear 
clustering can be seen for the US data and some mix-up exists for the Taiwan data. 
These results illustrate how MDS may be applied for clustering.

3. Constructing portfolio with MDS

3.1 Data

In this paper, daily returns of stocks from four countries are used for illustrations. The 
stock markets and the benchmarks are listed in Table 1. The whole datasets consists of 
daily close prices of the index and the component stocks.

Stock prices of the Taiwan stock market are collected from TEJ database. The dataset 
consist of 1219 daily prices of fifty companies from April 1, 2004 to March 2, 2009. 
Stock prices of the other three stock markets are collected from Datastream database. 
These data consist of 1219 daily prices of many different companies from April 1, 
2004 to December 2, 2008. 

On each day, a MDS map can be constructed with distances calculated with 
standardized innovations of the past 60 trading days. 

3.2 Strategies for diversification

When the relations among all the stocks can be represented by a map, two criteria on 
diversification for building portfolios are proposed here.

Definition. Diversification with respect to the universe. With respect to a universe of 
assets U and the corresponding MDS space X, a portfolio is said to be with respect to 
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the universe if the sum of the distances of all pairs of selected and unselected assets is 
minimized.

Definition. Diversification within selected assets. With respect to a universe of assets 
U and the corresponding MDS space X, a portfolio is said to be diversified within 
selected components if the sum of the distances among pairs of the selected assets is 
maximized.

Clearly the two criteria correspond to different schemes on diversification of assets. 
Diversification with respect to the universe asserts the sampled stocks to perform 
close to the average of all of the stocks, while diversification within selected assets 
pursues least inter-dependence among selected stocks.

However, it should be stressed that, while the stocks are distributed symmetric about 
the origin (the centroid of the points on the map), diversification with respect to the 
universe would result in stocks concentrated around to the origin and diversification 
within selected assets would lead to stocks that are located at the boundary. Both of 
the selections will be symmetric about the origin. Thus the two concepts, 
diversification and symmetry, are elaborately linked.

The assertion above indeed has been originated from the MDS framework. Since the 
inputs contain no information for absolute orientation, the only meaningful reference 
point on the map would be the origin (and infinities). While the stocks are 
symmetrically distributed, a well diversified portfolio must be symmetrically 
distributed too.

So four sampling schemes based on the MDS map are employed for the construction 
of portfolios as shown in the Figure 5. The first one is composed of stocks with the 
distances from the center ranked at equally spaced quantiles. The second one 
corresponds to the selection of the stocks near the center of the map. The third one 
consists of stock on the boundary of the map. The fourth one is comprised of stocks at 
the positive of the x-axis. For simplicity, these portfolios are denoted respectively P1, 
P2, P3 and P4.

The portfolio P2 with stocks near the center indeed follows the first criterion, and P3 
corresponds to an approximation to the second criterion. The first one, which meets 
common intuition about diversification, is in fact a hybrid realization of both of the 
two criteria. And obviously P4 shall be poorly allocated since it is asymmetric about 
the origin.

3.3 Empirical performances of the portfolios
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The backtests proceed as follows. First standardized innovations for each stock on 
each day are filtered as described in Section 2.2. Distances between two stocks on 
each day are then calculated with standardized innovations in the past 60 trading days. 
After running the MDS algorithm, 10 stocks are selected for the four portfolio 
mentioned above for each market. Each portfolio is constructed with weights 
inversely proportional to the volatilities:

it
it h

w 1∝ ,

and the return of the portfolio on day t will be

∑
∑

⋅=
i

it
it

i it

t r
h

h

R 1
1

1
.

It is 21 trading days for each portfolio to be held. At expiry, a new map is drawn and 
another 10 stocks are sampled for the next 21 trading days. Summary statistics for the 
returns of these portfolios are also shown in Table 2.

Three diversity measures for the returns are considered: standard deviation, range and 
the difference between 1st and 3rd quartiles. It is easily seen that these measure for P4 
are not necessarily the largest across all the markets in different periods. In fact, they 
tend to be lower than those of other portfolios. However, P4 almost always has the 
lowest correlations with the market index except for FTSE in the period after July of 
2007. 

For further investigations on the performances of these portfolios, the whole sampling 
period is divided into 46 frames of length of 21 trading days and the performance in 
each frame will be viewed as an independent sample. Summary statistics for 
volatilities of the four portfolios in 46 frames are tabulated in Table 3. Note that the 
correlations are calculated with the logarithms of the volatilities. Pairs plot for the 
logarithms of volatilities for the index and four portfolios in Taiwan 50 and S&P 100 
are shown in Figure 6. Linear relations can be easily seen for all pairs of volatilities 
and correlations of P4 with the index are generally lower than others.

A multiple comparison procedure based on Tukey’s Honestly Significant Differences 
(HSD) test is executed to test the hypotheses that all of the portfolios have the same 
levels of volatilities regarding the changes of volatilities of the index. Specifically, for 
the volatility of portfolio i at period t, the following linear model is considered

)log(~)log( 0tiit vv βα + , i=1, ,2 ,3, 4
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where log(v0t) is the volatility of the index.

The results are shown in Table 4 and meet the previous findings. The volatilities of P4 
are generally not the largest. Even more, they are significantly the lowest for the S&P 
100 case. This phenomenon is obviously worth more investigations.

Next, the efficiencies of the portfolios are investigated by the spread of the M2 risk-
adjusted performance measures (Modigliani and Modigliani, 1997) to the index 
returns, that is,

( ) mffP
P

m RrrR −+−
σ
σ

,

where Rm, σm, RP, and σP are respectively the returns , standard deviations of the index 
and the index, and rf is the risk free rate.

The boxplots for the spreads are shown in Figure 7 and the results for multiple 
comparison are in Table 5. Interestingly it is seen that the efficiencies of the first three 
portfolios differ across markets. However, except NEKKEI for which all the four 
portfolios are very similar, the ill diversified forth portfolio P4 is generally dominated 
by or at most comparable with some of the other three portfolios the rest. This seems 
to imply that benefits via diversifications essentially exist but optimal strategies may 
depend on which markets.

4. Conclusions and Extensions

In this paper, a systematic approach to diversification of assets with MDS is proposed. 
The dimension reduction technique converts the problem from dealing with 
correlations of pairs of stocks to accessing points in a low dimension space. Thus 
visualization of the correlation structure is possible and dynamic quantitative 
allocation strategies can be also made.

From this context, diversification can be elaborately related to symmetry. Diversified 
portfolios do not necessarily have lower variances, but they track the index or a 
market portfolio more closely and thus may perform efficiently relative to certain risk 
levels.

Further applications can be easily found, for example the index tracking problem. 
Higher levels of correlations with the index both for returns and volatilities implies 
that the symmetrically allocated portfolios match the index better and should be 
considered favorably. However, to meet with the challenges, more elaborate distance 
measures should be introduced to adequately address the tail behaviors of the return 
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distributions.

Furthermore, since the correlations of the stocks are represented as coordinates in a 
low dimension space, the structural change can be also dynamically monitored 
through this tool for more nonlinear modeling purposes as the industrial or even 
systemic risk factors evolves, for example, the AR(1)-modeling framework can be 
extended to a more general setting (Jeng 2008). This method thus provides as a basis 
to geometrically shape and monitor the frequently seen qualitative descriptions of 
fundamental analysis for market tructures which are constantly reshaped by 
macroeconomic growth-value prospects (investment styles), new investment 
opportunities and innovations of financial instruments and investment vehicles. Also, 
this method can provide easy and quick cross-market and cross-horizon comparisons 
for obtaining more complete and deeper market insights.

What is the most important is that this paper serves as a demonstration for the 
application of data mining tools in finance. Beyond the variances of the individual 
stocks and the correlation structures, there certainly will be more quantities useful for 
the description of the market conditions. It is then the data that reveal the nature of the 
markets.
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Table 1. Stock markets and the benchmarks.

Country Benchmark
US S&P 100
UK FTSE 100
Japan NIKKEI 225
Taiwan TSEC Taiwan50
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Table 2. Summary statistics for performances of portfolios in the four markets.

index P1 P2 P3 P4 index P1 P2 P3 P4 index P1 P2 P3 P4 index P1 P2 P3 P4

Mean -0.01% 0.06% 0.04% 0.02% 0.06% -0.03% 0.02% 0.00% 0.00% -0.03% -0.01% 0.03% 0.04% 0.00% 0.05% -0.01% 0.01% 0.00% 0.00% -0.01%

Max 6.45% 6.39% 5.49% 6.76% 5.78% 11.24% 14.20% 12.04% 12.45% 13.53% 9.84% 7.99% 7.69% 14.36% 6.72% 14.15% 18.70% 16.55% 15.69% 17.78%

3rd Quartile 0.79% 0.83% 0.80% 0.86% 0.92% 0.51% 0.63% 0.65% 0.66% 0.57% 0.61% 0.72% 0.74% 0.79% 0.82% 0.83% 0.99% 1.03% 1.00% 0.89%

1st Quartile -0.75% -0.72% -0.67% -0.74% -0.76% -0.48% -0.53% -0.57% -0.60% -0.58% -0.57% -0.62% -0.59% -0.67% -0.60% -0.77% -0.92% -0.82% -0.89% -0.92%

Min -6.50% -6.91% -6.04% -6.51% -6.25% -8.78% -9.05% -8.17% -10.41% -8.76% -8.85% -8.04% -6.70% -11.46% -7.05% -11.41% -11.90% -13.00% -11.92% -12.46%

STD 1.57% 1.61% 1.42% 1.66% 1.54% 1.49% 1.58% 1.48% 1.69% 1.44% 1.45% 1.52% 1.43% 1.87% 1.45% 1.84% 2.06% 2.06% 1.96% 2.13%

Range 12.95% 13.30% 11.53% 13.27% 12.02% 20.02% 23.25% 20.22% 22.86% 22.30% 18.69% 16.03% 14.39% 25.82% 13.77% 25.56% 30.61% 29.55% 27.61% 30.23%

Difference

between 1st and

3rd quartiles

1.54% 1.55% 1.47% 1.59% 1.67% 1.00% 1.16% 1.22% 1.26% 1.15% 1.17% 1.34% 1.34% 1.46% 1.42% 1.60% 1.91% 1.85% 1.89% 1.81%

Correlation with

the index

1 0.919 0.901 0.913 0.831 1 0.948 0.923 0.947 0.922 1 0.905 0.878 0.881 0.891 1 0.942 0.936 0.930 0.924

mean 0.08% 0.16% 0.11% 0.11% 0.13% 0.03% 0.07% 0.09% 0.05% 0.03% 0.05% 0.08% 0.10% 0.08% 0.11% 0.09% 0.10% 0.11% 0.12% 0.09%

max 3.08% 3.42% 3.71% 4.05% 4.25% 2.04% 2.44% 3.14% 2.37% 3.07% 2.64% 3.60% 4.43% 5.55% 3.68% 3.58% 4.74% 5.59% 4.55% 3.03%

3rd Quartile 0.71% 0.78% 0.72% 0.79% 0.79% 0.41% 0.52% 0.55% 0.54% 0.46% 0.51% 0.63% 0.63% 0.69% 0.71% 0.69% 0.87% 0.84% 0.89% 0.74%

1st Quartile -0.47% -0.44% -0.48% -0.44% -0.48% -0.30% -0.35% -0.36% -0.44% -0.38% -0.38% -0.42% -0.34% -0.48% -0.41% -0.47% -0.53% -0.54% -0.55% -0.47%

min -4.96% -4.22% -4.71% -4.14% -4.95% -3.57% -3.11% -3.81% -3.01% -3.29% -3.15% -4.21% -3.83% -4.37% -3.86% -4.14% -5.55% -3.37% -4.82% -3.84%

STD 1.05% 1.04% 1.00% 1.06% 1.15% 0.65% 0.74% 0.78% 0.75% 0.74% 0.74% 0.91% 0.92% 0.99% 0.98% 1.07% 1.20% 1.16% 1.22% 1.06%

Range 8.04% 7.65% 8.41% 8.19% 9.20% 5.60% 5.56% 6.95% 5.38% 6.36% 5.79% 7.81% 8.26% 9.92% 7.53% 7.73% 10.29% 8.96% 9.37% 6.87%

Difference

between 1st and

3rd quartiles

1.19% 1.22% 1.20% 1.23% 1.28% 0.72% 0.87% 0.91% 0.98% 0.84% 0.89% 1.05% 0.97% 1.17% 1.12% 1.16% 1.40% 1.38% 1.45% 1.21%

Correlation with

the index

1 0.881 0.847 0.880 0.755 1 0.874 0.839 0.858 0.863 1 0.899 0.804 0.883 0.850 1 0.888 0.886 0.903 0.875

mean -0.14% -0.10% -0.06% -0.11% -0.03% -0.12% -0.07% -0.12% -0.08% -0.12% -0.09% -0.06% -0.05% -0.13% -0.03% -0.15% -0.12% -0.15% -0.15% -0.16%

max 6.45% 6.39% 5.49% 6.76% 5.78% 11.24% 14.20% 12.04% 12.45% 13.53% 9.84% 7.99% 7.69% 14.36% 6.72% 14.15% 18.70% 16.55% 15.69% 17.78%

3rd Quartile 0.99% 1.12% 1.09% 1.45% 1.19% 0.72% 0.94% 0.99% 0.97% 0.89% 0.97% 1.07% 1.06% 1.17% 0.96% 1.14% 1.34% 1.35% 1.19% 1.41%

1st Quartile -1.32% -1.33% -1.12% -1.41% -1.30% -1.17% -1.18% -1.18% -1.32% -1.03% -1.12% -1.22% -1.17% -1.37% -0.96% -1.36% -1.55% -1.52% -1.65% -1.87%

min -6.50% -6.91% -6.04% -6.51% -6.25% -8.78% -9.05% -8.17% -10.41% -8.76% -8.85% -8.04% -6.70% -11.46% -7.05% -11.41% -11.90% -13.00% -11.92% -12.46%

STD 2.09% 2.16% 1.86% 2.24% 1.97% 2.22% 2.30% 2.11% 2.47% 2.07% 2.10% 2.12% 1.96% 2.70% 1.96% 2.54% 2.85% 2.85% 2.65% 3.03%

Range 12.95% 13.30% 11.53% 13.27% 12.02% 20.02% 23.25% 20.22% 22.86% 22.30% 18.69% 16.03% 14.39% 25.82% 13.77% 25.56% 30.61% 29.55% 27.61% 30.23%

Difference

between 1st and

3rd quartiles

2.31% 2.44% 2.21% 2.86% 2.49% 1.90% 2.12% 2.16% 2.29% 1.93% 2.08% 2.29% 2.24% 2.54% 1.92% 2.50% 2.89% 2.87% 2.84% 3.28%

Correlation with

the index

1 0.932 0.922 0.924 0.864 1 0.958 0.940 0.959 0.934 1 0.909 0.903 0.881 0.914 1 0.955 0.948 0.938 0.937
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Table 3. Summary statistics for volatilities (daily) of the four portfolios in 46 frames. 

The correlations, slopes and intercepts of regressions are calculated with the 

logarithms of the volatilities with those of the index.

Index P1 P2 P3 P4

Mean 0.0149 0.0145 0.0131 0.0150 0.0143

Max 0.0452 0.0363 0.0252 0.0380 0.0276

Min 0.0058 0.0067 0.0057 0.0065 0.0063

Quartile3 0.0177 0.0181 0.0166 0.0183 0.0171

Quartile1 0.0088 0.0090 0.0088 0.0098 0.0099

Correlation 0.9085 0.8910 0.8988 0.8820

Mean 0.0114 0.0124 0.0119 0.0136 0.0119

Max 0.0473 0.0428 0.0437 0.0559 0.0488

Min 0.0041 0.0042 0.0049 0.0046 0.0040

Quartile3 0.0133 0.0138 0.0120 0.0157 0.0134

Quartile1 0.0054 0.0063 0.0068 0.0064 0.0062

Correlation 0.7808 0.7858 0.7866 0.7576

Mean 0.0118 0.0131 0.0123 0.0147 0.0125

Max 0.0485 0.0398 0.0406 0.0578 0.0446

Min 0.0033 0.0042 0.0035 0.0047 0.0042

Quartile3 0.0153 0.0189 0.0158 0.0184 0.0149

Quartile1 0.0061 0.0071 0.0075 0.0074 0.0078

Correlation 0.7810 0.7855 0.7497 0.7249

Mean 0.0153 0.0168 0.0170 0.0166 0.0171

Max 0.0555 0.0646 0.0635 0.0570 0.0682

Min 0.0046 0.0054 0.0054 0.0048 0.0058

Quartile3 0.0170 0.0190 0.0198 0.0169 0.0202

Quartile1 0.0090 0.0101 0.0102 0.0104 0.0095

Correlation 0.8180 0.8584 0.8392 0.8808
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Table 4. Results for the multiple comparisons for the volatility levels of the index and 

four portfolios in the 46 frames by Tukey’s HSD method. The dash lines at the right 

sides represent that the levels of the logarithms of volatilities do not differ 

significantly.

ð =0.1 ð =0.05 ð =0.01 ð =0.1 ð =0.05 ð =0.01

P3 P3 P3 P3 P3 P3

P4 P4 P4 P1 P1 P1

P1 P1 P1 P2 P2 P2

P2 P2 P2 P4 P4 P4

ð =0.1 ð =0.05 ð =0.01 ð =0.1 ð =0.05 ð =0.01

P3 P3 P3 P2 P2 P2

P1 P1 P1 P3 P3 P3

P4 P4 P4 P1 P1 P1

P2 P2 P2 P4 P4 P4

Taiwan 50 S&P 100

FTSE NIKKEI
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Table 5. Results for the multiple comparisons for the spread of M2 to the index return 

for the four portfolios in 46 frames. The dash lines at the right sides represent 

insignificances of level differences.

ð =0.1 ð =0.05 ð =0.01 ð =0.1 ð =0.05 ð =0.01

P1 P1 P1 P2 P2 P2

P4 P4 P4 P3 P3 P3

P2 P2 P2 P4 P4 P4

P3 P3 P3 P1 P1 P1

ð =0.1 ð =0.05 ð =0.01 ð =0.1 ð =0.05 ð =0.01

P4 P4 P4 P2 P2 P2

P3 P3 P3 P3 P3 P3

P2 P2 P2 P1 P1 P1

P1 P1 P1 P4 P4 P4

Taiwan 50 S&P 100

FTSE NIKKEI
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Figure 1. Maps for normally distributed returns with constant drift, volatility and 

correlations.

Figure 2. Maps for returns with AR(1) factors and 6 clusters.
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Figure 3a. Maps for returns from a GARCH model (one cluster). Left penal: normally 

distributed innovations. Right Penal: t5 distributed innovations.

Figure 3b. Maps for returns from a GARCH model (two cluster). Left penal: normally 

distributed innovations. Right Penal: t5 distributed innovations. The dash lines indicate 

the location of stocks in the second clusters.
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Figure 4. Clustering effects in Taiwan 50 and S&P 100..

Figure 5. Sampling strategies for constructing portfolios.
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Figure 6. Pairs plot for the logarithms of volatilities for the index and four portfolios 

in Taiwan 50 and S&P 100 in 46 frames.
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Figure 7. Boxplots for the spread of M2 to the index return for the four portfolios in 46 

frames.
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