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Chapter 37 Numerical Valuation of Asian Options with Higher Moments in the 
Underlying Distribution
By

Kehluh Wang, National Chiao Tung University, Taiwan
Ming-Feng Hsu, Tatung University, Taiwan
Abstract: We develop a modified Edgeworth binomial model with higher moment consideration for pricing European or American Asian options. If the number of the time steps increases, our numerical algorithm is as precise as that of Chalasani et al. [1999], with lognormal underlying distribution for benchmark comparison. If the underlying distribution displays negative skewness and leptokurtosis, as often observed for stock index returns, our estimates are better and very similar to the benchmarks in Hull and White [1993]. The results show that our modified Edgeworth binomial model can value European and American Asian options with greater accuracy and speed given higher moments in their underlying distribution.
Keywords: Asian options; Edgeworth binomial model; Numerical analysis
37.1 Introduction
The payoff of an Asian option depends on the arithmetic or geometric price average of the underlying asset during the life of the option. Its value is path-dependent, normally without the closed form solution, and therefore more difficult to calculate than that of a standard option. However, the hedging effect of an Asian option, which is specifically widely used in the foreign exchange market, is better than that of a standard option and offers convenience and lower cost. 
Many researchers have applied various methods to value Asian options. There are mainly two approaches. Analytic approximations that produce closed-form solutions are proposed by Turnbull and Wakeman (1991), Lévy (1992), Zhang (2001, 2003), Curran (1994), Rogers and Shi (1995), and Thompson (2000). However, obtaining a pricing formula is still a challenging problem for many applications. In recent years, numerical methods have assumed increasing importance (Grant et al., 1997). Three popular methods, the Monte Carlo simulation, the finite difference method, and the binomial lattice, have been widely used to value Asian options. Although the Monte Carlo simulation is often used to compare with other pricing methods for its convenience and flexibility, its calculation is considered inefficient and very time-consuming. The difference equations transformed from partial differential equations can be solved quickly using numerical method. However, Barraquand and Pudet (1996) point out that for the path-dependent pricing problem, an augmentation of the state space is not viable in this approach.
Binomial tree models have been extensively applied in various option valuations (Amin, 1993; Rubinstein, 1994; Hilliard and Schwartz, 1996; Chang and Fu, 2001; Klassen, 2001). In particular, Hull and White (1993), Chalasani et al. (1998, 1999), Neave and Ye (2003), and Costabile et al. (2006) all adopt extended binomial models to value European or American path-dependent options. They claim that their algorithms are considerably faster and provide more accurate results compared with the analytical approximation used by Turnbull and Wakeman (1991).
Most of the valuation methods for Asian options assume that the return distribution of the underlying asset is lognormal. However, practitioners and academics are well aware that the finite sum of the correlated lognormal random variables is not lognormal. Corrado and Su (1997), and Kim and White (2003) both find significant negative skewness and positive excess kurtosis in the implied distribution of S&P 500 index options. Ahn et al. (1999) argues non-normal distribution when using put options to reduce the cost of risk management. It is for this reason that some researchers have tried to investigate other alternatives by considering the number of moments. For example, Milevsky and Posner (1998a, 1998b) and Posner and Milevsky (1998) apply the moment- matching analytical methods to approximate the density function of the underlying average for the European Asian options.

The purpose of this paper is to introduce a numerical algorithm in pricing European and American Asian options while considering the higher moments of the underlying asset distribution. We develop a modified Edgeworth binomial model which applies the refined binomial lattice (Chalasani et al., 1998, 1999) and use the Edgeworth expansible distribution (Rubinstein, 1998) to include the parameters for higher moments. The numerical results show that this approach can effectively deal with the higher moments of the underlying distribution and provide better option value estimates than those found in various studies in the literature.
The rest of the paper is organized as follows: The next section concisely introduces the pricing process of a binomial tree for an Asian option. The third section presents our Edgeworth binomial model for pricing Asian options with higher moment consideration. In the fourth and fifth sections, we discuss the lower and upper bounds of the prices of the European and American Asian options. The numerical examples for our approach are then provided in section 6. Especially, the algorithmic process with 3 periods is shown and our estimates are compared with the benchmarks discussed in literature. Finally, the last Section offers our conclusion.
37.2 Definitions and the Basic Binomial Model
An underlying variable, S(t), of an option at time t is generally assumed to satisfy the stochastic differential equation in a risk-neutral world:
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where the drift μ and volatility σ are constant, and {B(t)} denotes a Brownian motion process. Assume that the risk-free interest rate r is a constant, and that the option expires at time T. 
A binomial tree can approximate the continuous time function S(t), where one divides the life of the option into n time steps of length Δt=T/n. In each time step, the underlying asset may move up by a factor u with probability pc, or down by a factor d=u-1 with probability qc =1- pc, with 0<d<1<u. Firstly, we consider the one period case, i.e. time step k=1. The stock price at the end of the period will have two possible values, either up to a value S(0)u with probability pc or down to a value S(0)u-1 with probability 1-pc. These price movements can be represented in the following diagram,
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Now consider a call option with two periods (k=2) before its expiry date. The price process of the stock will show three possible values after two periods,
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[image: image3]
This price process of the stock can be extended to n time steps.
The stochastic differential equation describing this price process, i.e., dS(t)=μS(t)dt+ σS(t)dB(t), has the following solution,
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where Φ is a standardized normal random variable. 

For a binomial random walk to have the correct drift over a time period of Δt, we need
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namely, pcu+(1- pc)d=eμΔt. Rearranging this equation we can obtain 
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Here, let Ωn be a sample space of an experiment including all possible sequences of n upticks and downticks. A typical element of Ωn is presented as ω=ω1ω2…. ωn, where ωi denotes the ith uptick or downtick. Let {Hk(ω)} be an associated family of random variables, where Hk(ω) denotes the number of upticks at time k and H0(ω)=0 for all ω. We can define a symmetric random walk Xk, such that for each k≥1, Xk = Hk– (k–Hk)=2Hk–k, which represents the number of upticks minus the number of downticks up to time k. It is used to define the nodes in a binomial lattice corresponding to the possible positions of the underlying random walk at different times. Specifically, a tree path ω is displayed to pass through or reach node (k, h) if and only if Hk(ω)=h for times k=0,1,…,n and the number of possible upticks h=0,1,….,k. Consequently, the underlying asset price at time k is Sk (k =0,1,….,n), where
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For example, S3=S0u(2×2-3)=S0u at node (3, 2) in the lattice diagram of Figure 37.1. The underlying asset price at node (k, h) is given by S0u2h-k, whose average at time k is defined as Ak=(S0+S1+….+Sk)/(k+1), k≥0. Therefore, the payoff of an Asian call with strike price L at time n is Vn+=(An-L)+=max {An-L, 0}. The price of a European option is the present value of the expected payoff discounted to time 0, i.e., 
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. And the price of an American option at time 0 is the maximum discounted expected payoff from all possible exercise strategy τ, i.e., 
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. Note that E[Vn+] is a probability-weighted average given by ∑kPk(Ak-L)+, where Pk denotes the risk-neutral probability associated with Ak at the expiration date.

[image: image11]
Figure 37.1 A binomial tree. Node (3, 2) means there are 2 upticks in any path reaching this node at time 3.

37.3 Edgeworth Binomial Model for Asian Option Valuation
To consider the higher moments, we first apply the Edgeworth binomial tree model (Rubinstein, 1998). Assume that the tree has n time steps and n+1 nodes (h=0,1, …, n) at step n. At each node h, there is a random variable yh=[2h-n]/ n1/2 with a standardized binomial density b(yh)= [n!/h!(n-h)!](1/2)n. Giving predetermined skewness and kurtosis, the binomial density is transformed by the Edgeworth expansion up to the fourth moment. The result is
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with f(yh)=[1+(1/6)(1(yh3-3yh)+(1/24)( (2-3)(yh4-6yh2+3)+(1/72) (1 (yh6-15yh4+45yh2-15)],

where (1=EQ[yh3] is the skewness and (2= EQ[yh4] is the kurtosis of the underlying distribution under risk-neutral measure. While the sum of F(yh) is not one, we normalize F(yh) by F(yh)/(j F(yj) and denote it as Ph.

The variable yh, which has probability Ph, can be standardized as xh=(yh-M)/V with M=(hPhyh and V2=(hPh(yh-M)2. The variable xh is used later in Equation (37.2) to obtain the asset price and the corresponding risk-neutral probability, Ph, for a path to node h.
Consider a tree model of n steps. The asset price at the hth node (h= 0, 1, ….., n) during the final step, Ŝn,h, is
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with   
[image: image16.wmf]h

x

T

n

h

h

e

T

s

å

=

-

=

0

ln

1

P

r

μ

,

where S0 is the initial asset price, r is the continuously compounded annual risk-free rate, T is the time for expiration of the option (in years), σ is the annualized volatility rate for the cumulative asset return, and xh is a random variable from probability distribution Ph with mean 0 and variance 1. Ph is determined by modifying the binomial distribution using the Edgeworth expansion up to the fourth moment of ln (Ŝn,h / S0). Finally, μ is used to ensure that the expected risk-neutral asset return equals r. Solving backwards recursively from the end of the tree, the nodal value, Sn-1,h, is


[image: image17.wmf])

exp(

1

1

n

rT

n,h

e

n,h

e

,h

n

-

ú

û

ù

ê

ë

é

+

=

Ù

+

Ù

-

S

q

S

p

S

                                 (37.3)
with pe = pn,h+1/(pn,h+1+ pn,h) and qe =(1- pe), where pn,h is Ph / [n!/h!(n-h)!]. To demonstrate these nodal values in the binomial lattice, a numerical example with 3 time steps is shown in later Section.

[image: image18]
Figure 37.2 A binomial lattice. The shaded area shows the diamond-shaped boxes for node (6,2).
The path dependence of Asian options is analyzed using the approach by Chalasani et al. (1999). In order to represent the refined binomial lattice, a new random variable Wk,h denoting an area at time k is assigned. Its initial value W0 is zero. For any node (k, h) in the tree, a lowest path reaching (k, h) is defined as the path with k-h downticks followed by h upticks, and a highest path reaching (k, h) means the one with h upticks followed by k-h downticks. The area Wk,h (ω) of a path ω reaching (k, h) can be defined as the number of diamond-shaped boxes enclosed between this path ω and the lowest path reaching this node. For example, the node (5, 2) means that the paths reaching it have 2 upticks at time 5. As demonstrated in Figure 37.2, a path passing through (5, 2) and reaching node (6, 2) is shown by the thick line segments. The area W6,2 (ω) of this path is the number of diamond-shaped boxes, contained between this path and the lowest path reaching node (6, 2), as shown by the shaded area in the graph. The maximum area of any path reaching (k, h) is the number of boxes between the highest and the lowest paths reaching (k, h), that is, h(k-h). The minimum area of any path reaching (k, h) is zero. The set of possible areas of paths reaching node (k,h) is therefore {0,1,…,h(k-h)}. Each node of the binomial lattice can be partitioned into “nodelets” based on the areas of the paths reaching this node. Therefore, any path reaching a given nodelet (k, h, a) has an area Wk,h (ω)=a with h upticks at time k. For instance, Fig. 37.3 shows the nodelets in the nodes (5, 2), (6, 3) and (6, 2). As noted in Chalasani et al. (1999), there is a one-one correspondence between the possible areas and the possible geometric averages of underlying asset prices for paths reaching (k, h). Therefore, (k, h, a) represents all the paths in the binomial tree that reach node (k, h) and has the same geometric average asset price from time 0 to time k.

[image: image19]
Figure 37.3 Nodelets in the nodes (5, 2), (6, 3) and (6, 2) as circled in Figure 37.2. This Fig. exhibits the number of paths M(k, h, a) reaching each nodelet (k, h, a). An example is shown for nodelet (5, 2, 2) which is updated as in the nodelets (6, 3, 2) and (6, 2, 4).
Suppose the area of a path A reaching (k, h) is Wk,h (A)=a. If A has an uptick after this point, it reaches node (k+1, h +1) at the next time-step. The path A and the lowest path B reaching (k+1, h +1) share the same edge linking (k, h) and (k+1, h +1) in the lattice. Hence, the number of boxes between A and B at time k+1 is the same as the number at time k. In this way the path A reaches nodelet (k+1, h +1, a). On the other hand, if A has a downtick after time k, it will reach node (k+1, h). In this case, the number of boxes at time k+1 between A and the lowest path reaching (k+1, h) will be increased by h to get a+h. The path A then reaches nodelet (k+1, h, a+h).

We now show how the arithmetic average of underlying asset prices over all paths reaching (k, h, a) is computed and denote it by Ā (k, h, a) = E[Ak| Hk=h, Wk,h(ω)=a], k=0,1,…,n, h ≤ k. It is simply the average of Ak over these paths. So the arithmetic average of stock prices over all paths reaching nodelet (k, h, a) can be expressed as:
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where
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, with k=0, 1,…, n; h =0, 1,…, k; a=0, 1,…, h(k-h); m=1,2,…,M(k, h, a); and M(k, h, a) is the number of paths reaching (k, h, a) with M(0, 0, 0) = 1. Here, S″(k, h, a) is the sum of S′m (k, h, a) over all paths passing through (k, h, a) with S″( 0, 0, 0) = S0, while S′m (k, h, a) is the sum of the asset prices along any possible path passing through (k, h, a) from time 0 to k.

Any path passing through nodelet (k, h, a) and having an uptick will get to nodelet (k+1, h+1, a) at time k+1. Thus, the number of paths reaching nodelet (k+1, h+1, a), namely, M(k+1, h+1, a), should include M(k, h, a) paths through (k, h, a). The sum of the prices from all the paths reaching (k+1, h+1, a), namely, S″(k+1, h+1, a), would be S″(k, h, a) + M(k, h, a) Sk+1,h+1 for paths passing (k, h, a). Likewise, all paths passing through nodelet (k, h, a) with a downtick will reach nodelet (k+1, h, a+h) at time k+1. Similarly, M(k+1, h, a+h) should also include M(k, h, a) and S″(k+1, h, a+h) would be S″(k, h, a) + M(k, h, a) Sk+1,h in the forward induction process.
37.4 Upper Bound and Lower Bound for European Asian Options
Next, we present how the value of an Asian option after obtaining the arithmetic average of the stock prices from Equation (37.4) is estimated. We apply the approach used by Rogers and Shi (1995), where the lower bound and the error bound are calculated for the price of an Asian option. This lower bound on the price of an Asian call option with strike L can be expressed as:
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where Z=(Wn,h, Sn,h) in which the random variable Wn,h denotes the area at node (n, h), and Sn,h represents the stock price reaching (n, h). The composition in the lower bound, E[An| Wn,h , Sn,h], can be expressed as Ā(n, h, a), as in Equation (37.4). Ā(n, h, a) is the expectation of the average stock price An at node (n, h), where An= ( S0 + S1,h +….+ Sn,h ) / ( n + 1 ) on a tree path passing through (n, h, a). All paths through this nodelet have the same probability P(Wn,h, Sn,h), which is M(n, h, a)pehqen-h. Thus, we can calculate the lower bound as
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As a result, the error bound is
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assuming Vnmin(Z)<0 and Vnmax(Z)>0, where Vn=An-L.
 Note that var (An –L) = var An= E A2n -(E An)2 and Ā2(n, h, a) = E[A2n|Wn,h, Sn,h]. Let Amin(k, h, a) denote the minimal value of Ak and Amax(k, h, a) its maximum over all paths passing through the nodelet (k, h, a). Thus, the error bound by Equation (37.6) equals
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The Ā (n, h, a) can be derived from Equation (37.4). Meanwhile, Amin(k, h, a) = Smin(k, h, a)/(k+1) and Amax(k, h, a)= Smax(k, h, a)/(k+1), where Smin(k, h, a) and Smax(k, h, a) are respectively the minimum value and maximum value of Sk,h over these paths reaching (k, h, a). Ā2(n, h, a) can also be calculated from the following:
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where φ(k, h, a) is the sum of 
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 With the lower bound and the error bound, we can obtain the upper bound.
Suppose one upward probability pe, denoting the probability of the stock price moving up for the next step in the Edgeworth binomial tree, is lower than the other upward probability pc, the probability of the stock price moving up in the binomial tree of Chalasani et al. (1999). The average stock price in a path with upward drift causes higher probability of Amin(k, h, a)>L, i.e., higher probability of zero variance. So the total variance of the average stock price will be smaller. According to Equation (37.7), the error bound of the option price with upward probability pe will be smaller than the error bound with probability pc. We can show in the following proposition that this can lead to tighter bounds on the error from approximating E[Vn+] if its upward probability is lower.
We first show that the error bound in approximating E[Vn+] from a modified Edgeworth binomial tree model and that from a binomial tree model employed by Chalasani et al. (1999) are proportional to their upward probabilities respectively in the binomial paths. For this, we use a discrete approximation method similar to the lattice approach. Let T be the time for expiration of the option. At time T, let Ye(T) denote the variance of the arithmetic average of the stock prices in our modified Edgeworth binomial tree with upward probabilities pe, and Yc(T) denote the variance of the average price in a binomial tree from Chalasani et al. with upward probability pc. From Eq. (37.2), the asset price in the Edgeworth model is affected by the drift with upward trend, resulting in higher average than the case in Chalasani et al. From Eq. (37.7), higher average price increases the probability of Amin(k, h, a)>L, i.e., higher probability of zero variance based on explanations in footnote 1. We thus have Yc(T) ≥ Ye(T).

Assume for the moment that pe is less than pc. At time t = T/3, the conditional expectations of the variances with upward probabilities pe and pc are given by E3t [Ye(T)] and E3t [Yc(T)], respectively. We can see (ignoring the discount factors) that
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Similarly, at time t = T/4,
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Therefore, as long as the above inequality continuously holds for all time t ≤ T/5, the error bound for a tree model with upward probability pe will be tighter than that for a tree with upward probability pc, given that pe is less than pc. The following proposition shows that this can lead to tighter bounds on the error from approximating E[Vn+] if its upward probability is lower. The detailed analytical explanation is discussed in Lo et al. (2008).
Proposition: The error bound in pricing a European Asian option from the modified Edgeworth binomial model is tighter than the error bound from the model by Chalasani et al. (1999).
37.5 Upper Bound and Lower Bound for American Asian Options
Define CU (k, h, x) as the value of an American Asian option at time k, given that the number of upticks is h and the arithmetic asset price average Ak equals x. CU can be expressed as follows:
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where L is the exercise price, pe = pk+1,h+1/(p k+1,h+1+ p k+1,h) and qe =(1- pe) with pk+1,h being Ph / [(k+1)!/(h!((k+1)-h)!)]. Here xU(k, h) = [x(k+1) + Sk+1,h+1]/(k+2) is the arithmetic asset price average Ak+1, given that x is the arithmetic asset price average Ak and an uptick occurring at time k+1. Similarly xL(k, h) = [x(k+1) + Sk+1,h]/(k+2) is the arithmetic asset price average Ak+1, given that x equals Ak and there is a downtick at time k+1. Therefore, for any path ω such that Hk(ω)=h and Ak(ω)=x, the price of an American Asian option at time k on ω is CU(k, h, x) whose value at time 0 is CU(0,0,S0).

However, we cannot directly calculate CU(0,0,S0). The quantity xU(k, h) may not equal any of the possible averages of asset prices over all paths reaching node (k+1, h+1) with area a. And similarly, xL(k, h) may not equal any average at node (k+1, h). But we can use linear interpolation to derive these missing values because Ā(k, h, a) is a strictly increasing function in a.

Firstly, we compute the upper bound of the American Asian option using an idea similar to Hull and White (1993). For a given x = Ā(k, h, a), we can find b such that for some 0(((1, 

xU(k, h) = ( Ā(k+1, h+1, b) + (1-() Ā(k+1, h+1, b+1).

Therefore, on the right hand side of (37.8), CU(k+1, h+1, xU(k, h)) can be replaced by

WU(k, h, a) = ( w1 + (1-() w2,

where w1 is W(k+1, h+1, b) =[Ā (k+1, h+1, b)-L]+ and w2 is W(k+1, h+1, b+1) =[Ā (k+1, h+1, b+1)-L]+. Similarly CU(k+1, h, xL(k, h)) can be substituted by WL(k, h, a)= ( w’1 + (1-() w’2, where w’1 is W(k+1, h, b) =[Ā(k+1, h, b)-L]+and w’2 is W(k+1, h, b+1) =[Ā(k+1, h, b+1)-L]+. Using this procedure backward recursively, for x = Ā(k, h, a), a = 0, 1,…, h(k-h), we have
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              (37.9)

for all (k, h, a) in the tree. It follows that the estimate W(0, 0, 0) is an upper bound for the value of an American Asian option at time zero.

We now provide a lower bound of the American Asian option which can be obtained during the process for upper bound calculation applying a proper exercise rule. Such lower bound has been proposed for European Asian options by Rogers and Shi (1995) and generalized by Dhaene et al. (2002a, 2002b). Let Z be a random variable with the property that all random variables E[Si|Z] are non-increasing or non-decreasing functions of Z. The notation Sl represents a comonotonic sum of n lognormal random variables.
 The cdf of this sum can be obtained by Theorem 5 from Dhaene et al. (2002a). If we assume that the cdfs of the random variables E[Si |Z] are strictly increasing and continuous, then the cdf of Sl is also strictly increasing and continuous. From Eq. (48) of Dhaene et al. (2002a), we obtain that for all nL( 
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 is the inverse of the cumulative distribution function of X.

Or equivalently,
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This determines the cdf of the convex order random variable Sl =E[S’m |Z] for
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Under the same assumptions, the stop-loss premiums can be determined from Eq. (55) of Dhaene et al. (2002a):
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which holds for all retentions 
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. Hence, the lower bound on the price of an American Asian call option with strike L, applying Jensen’s rule, is:
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where τ represents a stopping time for a fixed exercise rule, Zk is Φk-measurable and Φk  represents the information set at time k, and R is the discount factor, i.e. R=e-rT/n. Note that each possible value of the random variable Zk corresponds to a nodelet in the refined lattice. For an exercise rule τ, the calculation of the upper bound in inequality (37.10) will generate the estimate for the lower bound.

While calculating the upper bound, whenever W(k, h, x) > [pe WU(k, h, a)+ qe WL(k, h, a)] exp(-rT/n) in Equation (37.9), the option will be exercised at nodelet (k, h, a). So CL (k, h, a) = [S’ (k, h, a) – (k+1)L]+ at each exercised nodelet (k, h, a). For a nodelet at which the option is not exercised,

CL(k, h, x) = [pe CL(k+1, h+1, a) + qe CL(k+1, h, a+h)] exp(-rT/n),

where S’(k, h, a)/(k +1) = E(Ak | Zτ= (k, h, a))=
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/(k+1), and pe = pk+1,h+1/(pk+1,h+1+ pk+1,h) and qe =(1- pe) with pk+1,h being Ph / [(k+1)!/(h!((k+1)-h)!)]. Thus S’(k, h, a) is simply the average of (S(m(k, h, a) over all paths at nodelet (k, h, a), while S(m(k, h, a) is the sum of the asset prices along any path with exercise point in its m paths reaching (k, h, a) from time 0 to k. We can easily see that CL(0, 0, 0) equals the expected value at time 0 in Equation (37.10), which is the lower bound.
37.6 Numerical Examples
To explain the Edgeworth binomial pricing model for American and European Asian options under distributions with higher moments, consider the following examples of call options with 3 periods. The initial stock price S0 = 100, the maturity T = 1 year, and the strike prices L = 100. The underlying distribution has volatility σ = 0.3 and risk-free rate r =0.1. 
37.6.1 Pricing European Asian Options under Lognormal Distribution
We construct the binomial lattice for the asset value process as described in the third Section. EXHIBIT 37.1 shows the nodal values with lognormal distribution in the binomial lattice. We can write down a simple algebraic expression for underlying asset value of the node (3,3) and (2,2). The steps are described below:
1. We can get
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at node (3,3) when the underlying distribution is lognormal. Therefore 
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2. From P3, x3 and the assumed σ=0.3, r=0.1 and T=1, the drift 
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. Therefore the asset price at node (3,3) is 
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. The asset prices of the other nodes at the final step in the binomial lattice can be calculated similarly.
3. Upward and downward probabilities are pe=qe=0.5 under lognormal distribution. Solving backwards recursively from the node (3,3) and (3,2), the nodal value, S2,2, is 
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, according to Equation (37.3). Using the same method, we can compute the remainder of the asset prices in the binomial lattice.
EXHIBIT 37.1 The nodal values in the binomial lattice under lognormal distribution.

[image: image65]
After the underlying asset value is obtained for each node in the binomial lattice, we next calculate the arithmetic average of the stock prices under lognormal distribution as shown in EXHIBIT 37.2. The algorithmic process for the average price at node (3,2) is described as follows:
1. We first compute the number of paths reaching node (3, 2). There are three paths, i.e. (3,2,0), (3,2,1) and (3,2,2). The number of the paths reaching these nodelets, M(3,2,0), M(3,2,1) and M(3,2,2), is equal to one.
2. The sums of the asset prices over all paths passing through these nodelets are S″(3, 2, 0) = 100+85.65+103.73+125.64 = 415.02, S″(3,2,1) = 450.48 and S″(3,2,2)=493.43, respectively. 
3. According to Eq. (37.4), the arithmetic averages of the stock prices over all paths reaching nodelets (3,2,0), (3,2,1) and (3,2,2) can be obtained. The average price at nodelet (3,2,0), Ā (3,2,0), is then equal to 415.02/[(3+1)(1)]=103.76. Similarly, Ā (3,2,1) = 112.62 and Ā (3,2,2) =123.36.
EXHIBIT 37.2 The arithmetic averages of the stock prices under lognormal distribution.
The top number at each node denotes the arithmetic average of the stock prices and its nodelet position in the binomial lattice is shown in parenthesis.

[image: image66]
According to the average values of the underlying asset for the nodes at the end of the tree, the lower bound formula in the fourth section can be applied to calculate the price of a European Asian option. The numerical result is:
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The error bound from Equation (37.7) is then used to obtain the upper bound of this option. That is:
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The number of all paths used in the above equation is equal to one. And the upward and downward probabilities are both 0.5 in calculating the lower bound. The error bound is zero because the conditions 
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 are not satisfied for all the paths. We illustrate the calculating process of the Ā2 (3,1,0) as follows:
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From the lower bound and the error bound, we can obtain the upper bound, 8.99. This result is shown in EXHIBIT 37.3.
Considering first the normal skewness and kurtosis, the results are tested and compared with those in the literature. The call option to be valued has the initial stock price S0 = 100, the maturity T = 1 year, and the strike prices L = 95, 100, 105, and 110, respectively. The underlying distribution has volatility σ = 0.1, 0.3 and 0.5 respectively, with normal skewness 1 = 0 and kurtosis 2 = 3. The risk-free rate r is set to be 0.09. The time steps N equals 30, and the computing time and memory space needed in our algorithm are similar to those of Chalasani et al. (1998). We present our simulation results in Table 37.1 and Table 37.2.
In Table 37.1, we compare our results with those of Rogers and Shi (1995) and of Chalasani et al. (1998). When the call is in-the-money, our valuation in general is smaller than those of Chalasani et al. (1998). However, the range of our lower and upper bounds is narrower than theirs. For at-the-money and out-of-the-money calls, our estimates are greater than theirs and closer to those of Rogers and Shi’s, but the distance between our lower and upper bounds is almost the same as that of Chalasani et al. The difference between our calculations and those of Rogers and Shi’s is due to our numerical approximation comparing with their continuous-time integrals.
EXHIBIT 37.3 Pricing European Asian option under lognormal distribution.
The top number at each node denotes the value of the call option, and its nodelet position in the binomial lattice is shown in parenthesis.
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In Table 37.2, we compare our results with those of Monte Carlo simulations from Lévy and Turnbull (1992). Because Chalasani et al. (1998) claim that their results are closer to Monte Carlo estimations than those of Roger and Shi (1995), we also listed their bounds. As depicted in the table, our estimates are much closer to the results of Monte Carlo simulations, so our algorithm in pricing Asian options performs better than that of Chalasani et al. (1998).

Table 37.1 Model comparisons for European Asian option valuations under normal skewness and kurtosis
	Strike L
	Vol. σ
	r
	E-LB
	E-UB
	RS-LB
	RS-UB
	C-LB
	C-UB

	95
	0.05
	0.05
	7.177
	7.177
	7.178
	7.183
	7.178
	7.178

	100
	0.05
	0.05
	2.712
	2.712
	2.716
	2.722
	2.708
	2.708

	105
	0.05
	0.05
	0.332
	0.332
	0.337
	0.343
	0.309
	0.309

	95
	0.05
	0.09
	8.811
	8.811
	8.809
	8.821
	8.811
	8.811

	100
	0.05
	0.09
	4.306
	4.306
	4.308
	4.318
	4.301
	4.301

	105
	0.05
	0.09
	0.957
	0.957
	0.958
	0.968
	0.892
	0.892

	95
	0.05
	0.15
	11.100
	11.100
	11.094
	11.114
	11.100
	11.100

	100
	0.05
	0.15
	6.799
	6.799
	6.794
	6.810
	6.798
	6.798

	105
	0.05
	0.15
	2.745
	2.745
	2.744
	2.761
	2.667
	2.667

	90
	0.10
	0.05
	11.947
	11.947
	11.951
	11.973
	11.949
	11.949

	100
	0.10
	0.05
	3.635
	3.635
	3.641
	3.663
	3.632
	3.632

	110
	0.10
	0.05
	0.319
	0.320
	0.331
	0.353
	0.306
	0.306

	90
	0.10
	0.09
	13.385
	13.385
	13.385
	13.410
	13.386
	13.386

	100
	0.10
	0.09
	4.909
	4.909
	4.915
	4.942
	4.902
	4.902

	110
	0.10
	0.09
	0.621
	0.621
	0.630
	0.657
	0.582
	0.583

	90
	0.10
	0.15
	15.404
	15.404
	15.399
	15.445
	15.404
	15.404

	100
	0.10
	0.15
	7.024
	7.024
	7.028
	7.066
	7.015
	7.015

	110
	0.10
	0.15
	1.411
	1.412
	1.413
	1.451
	1.316
	1.317

	90
	0.30
	0.05
	13.928
	13.936
	13.952
	14.161
	13.929
	13.938

	100
	0.30
	0.05
	7.924
	7.932
	7.944
	8.153
	7.924
	7.932

	110
	0.30
	0.05
	4.041
	4.051
	4.070
	4.279
	4.040
	4.049

	90
	0.30
	0.09
	14.961
	14.968
	14.983
	15.194
	14.964
	14.972

	100
	0.30
	0.09
	8.811
	8.818
	8.827
	9.039
	8.807
	8.815

	110
	0.30
	0.09
	4.672
	4.682
	4.695
	4.906
	4.661
	4.671

	90
	0.30
	0.15
	16.494
	16.500
	16.512
	16.732
	16.499
	16.506

	100
	0.30
	0.15
	10.197
	10.205
	10.208
	10.429
	10.187
	10.195

	110
	0.30
	0.15
	5.715
	5.725
	5.728
	5.948
	5.685
	5.696


Note: The European Asian option to be valued has initial stock price S0=100 dollars and option life T=1.0 year. Using time steps N=30, the lower and upper bounds from our algorithm are indicated by E-LB and E-UB, respectively, while those from Rogers and Shi (1995) are indicated by RS-LB and RS-UB, and those from Chalasani et al.(1998) by C-LB and C-UB. We used normal skewness 1=0 and kurtosis 2=3 in our algorithm.

Table 37.2 Comparisons with Monte Carlo simulations under normal skewness and kurtosis

	Strike L
	Vol. σ
	r
	Monte Carlo
	E-LB
	E-UB
	C-LB
	C-UB

	95
	0.10
	0.09
	8.91
	8.91
	8.91
	8.91
	8.91

	100
	0.10
	0.09
	4.91
	4.91
	4.91
	4.90
	4.90

	105
	0.10
	0.09
	2.06
	2.07
	2.07
	2.03
	2.03

	90
	0.30
	0.09
	14.96
	14.96
	14.97
	14.96
	14.97

	100
	0.30
	0.09
	8.81
	8.81
	8.82
	8.81
	8.82

	110
	0.30
	0.09
	4.68
	4.67
	4.68
	4.66
	4.67

	90
	0.50
	0.09
	18.14
	18.14
	18.18
	18.15
	18.19

	100
	0.50
	0.09
	12.98
	12.98
	13.02
	12.99
	13.03

	110
	0.50
	0.09
	9.10
	9.07
	9.11
	9.08
	9.12


Note: The European Asian option to be valued has initial stock price S0=100 dollars and option life T=1.0 year. Using time steps N=30, the lower and upper bounds from our algorithm are indicated by E-LB and E-UB, respectively, while Monte Carlo estimates from Lévy and Turnbull (1992) are indicated by Monte Carlo, and those from Chalasani et al.(1998) are indicated by C-LB and C-UB. We used normal skewness 1=0 and kurtosis 2=3 in our algorithm.
37.6.2 Pricing American Asian Options under Lognormal Distribution

We can use the example in EXHIBIT 37.1 and 37.2 to explain the process for computing an American Asian option under lognormal distribution. Eq. (37.9) in the fifth Section is applied to estimate an upper bound for the value of an American Asian option at time zero. The following illustration for nodelet (2,2,0) explains this recursive backward procedure. 
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where WU(2, 2, 0) = ( w1 + (1-() w2 with w1 being W(2+1, 2+1, b) =[Ā (2+1, 2+1, b)-L]+ and w2 being W(2+1, 2+1, b+1) =[Ā (2+1, 2+1, b+1)-L]+, and WL(2, 2, 0)= ( w’1 + (1-() w’2 with w’1 being W(2+1, 2, b) =[Ā(2+1, 2, b)-L]+and w’2 being W(2+1, 2, b+1) =[Ā(2+1, 2, b+1)-L]+.
We need to calculate values of (, w1 and w2 before WU(2, 2, 0) can be estimated. 
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Similarly, value of WL(2, 2, 0) is:
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Hence, we can get W(2, 2, 0) below,
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Values at other nodes can be calculated in the same way. As shown in EXHIBIT 37.4, the estimated W(0, 0, 0)=9.12, which is the upper bound for the value of the American Asian option at time zero.
The exercise rule discussed in the fifth Section can be applied to find the lower bound. Whenever W(k, h, x) > [(pk+1,h+1/p) WU(k, h, a)+ (pk+1,h/p) WL(k, h, a)] exp(-rt/n) in Equation (37.9), the option will be exercised at nodelet (k, h, a); otherwise it will not be exercised. We again use the illustration of nodelet (2,2,0) to account for the exercise rule. At nodelet (2,2,0), CL(2,2,0) is equal to [S(2,2,0)–(2+1)L]+/(2+1) = [(100+121.11+146.68)– (2+1)(100)] /(2+1) = 22.6 if the option is exercised. However, if it is not exercised, CL(2,2,0) equals [pe CL(2+1, 2+1, 0) + qe CL(2+1, 2, 0+2)] exp((-0.1)(1)/3) = [(0.5)(36.36)+(0.5)(23.36)] exp ((-0.1)(1)/3) = 28.88. Therefore, the option will not be exercised at nodelet (2,2,0), so its value is equal to 28.88. Because all the nodelets before the maturity time in EXHIBIT 37.4 are not exercised, the lower bound is equal to the upper bound. 
In order to examine the possible errors from the Edgeworth approximations, we first compare our results with those of Chalasani et al. (1999) and Hull and White (1993) for lognormal underlying distribution. Table 37.3 shows the estimated value of an at-the-money American Asian option using different time steps with yearly volatility at 0.3, the risk-free rate at 0.1, and the initial stock price at 50 dollars. Table 37.4 further provides the estimates of the values with 40 time steps but under various maturities and strike prices. Hull and White’s approximation for American Asian options is used as our benchmark.

In Table 37.3, we find that the lower and the upper price bounds of an American Asian option using our method are lower than those from Chalasani et al. (1999) and Hull and White (1993). However, when we gradually increase the number of the time steps our results are almost the same as theirs. Although the Edgeworth density f(x) is not exactly a probability measure, the approximation errors tend to be very small if more time steps are used in the simulations.
Table 37.4 exhibits the results under different strikes and option lives using the same number of time steps. When the options are out-of-the-money, our estimates are slightly greater than those from Chalasani et al. (1999) and Hull and White (1993). However, for in-the-money options, ours are slightly lower than theirs. The differences between our results and theirs are lowered if the options are closer to the expiration. Our simulations confirm the discussions by Ju (2002), that the Edgeworth expansion method works fine for shorter maturities, but not for long maturities, while pricing Asian options.
EXHIBIT 37.4 Pricing American Asian option under lognormal distribution.
The top number at each node denotes the value of the call option and its nodelet position in the binomial lattice is shown in parenthesis.
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Table 37.3 Model comparisons for American Asian option valuations under lognormal distribution

	Steps n
	E-LB
	E-UB
	C-LB
	C-UB
	HW(h=0.005)
	HW(h=0.003)

	20
	4.811
	4.813
	4.812
	4.815
	4.815
	4.814

	40
	4.886
	4.888
	4.888
	4.889
	4.892
	4.890

	60
	4.916
	4.917
	4.917
	4.918
	4.924
	4.920

	80
	4.932
	4.933
	4.933
	4.934
	4.942
	4.936


Note: The American Asian options are valued with initial stock price S0  = 50 dollars, strike K = 50 dollars, option life T = 1.0 year, volatility σ = 0.3 per year, and risk-free rate r = 0.1 per year. The estimated lower and upper bounds from our Edgeworth binomial model are indicated by E-LB and E-UB, respectively, whilst the estimates from Hull-White (1993) with different grid-size h are denoted by HW, and those from Chalasani et al. (1999) are denoted by C-LB, C-UB. All simulations are conducted under different time steps with normal skewness (1=0 and kurtosis (2=3. Parameter values are selected so the results can be compared with those in the literature.

Table 37.4 Model comparisons for American Asian option valuations under lognormal distribution with different option lives and strikes
	Option Life T
	Strike L
	E-LB
	E-UB
	C-LB
	C-UB
	HW

	0.5
	40
	12.105
	12.105
	12.111
	12.112
	12.115

	0.5
	45
	7.248
	7.248
	7.255
	7.255
	7.261

	0.5
	50
	3.268
	3.269
	3.269
	3.270
	3.275

	0.5
	55
	1.150
	1.151
	1.148
	1.148
	1.152

	0.5
	60
	0.323
	0.323
	0.320
	0.320
	0.322

	1.0
	40
	13.136
	13.137
	13.150
	13.151
	13.153

	1.0
	45
	8.535
	8.537
	8.546
	8.547
	8.551

	1.0
	50
	4.886
	4.888
	4.888
	4.889
	4.892

	1.0
	55
	2.537
	2.539
	2.532
	2.534
	2.536

	1.0
	60
	1.211
	1.213
	1.204
	1.206
	1.208

	1.5
	40
	13.967
	13.969
	13.984
	13.985
	19.988

	1.5
	45
	9.636
	9.639
	9.648
	9.650
	9.652

	1.5
	50
	6.193
	6.195
	6.195
	6.197
	6.199

	1.5
	55
	3.774
	3.777
	3.767
	3.770
	3.771

	1.5
	60
	2.201
	2.204
	2.190
	2.193
	2.194

	2.0
	40
	14.685
	14.688
	14.709
	14.712
	14.713

	2.0
	45
	10.605
	10.609
	10.620
	10.623
	10.623

	2.0
	50
	7.320
	7.323
	7.322
	7.325
	7.326

	2.0
	55
	4.889
	4.893
	4.881
	4.885
	4.886

	2.0
	60
	3.180
	3.184
	3.167
	3.170
	3.171


Note: The American Asian options are valued with initial stock price S0 = 50 dollars, time steps n = 40, volatility σ = 0.3 per year, and risk-free rate r = 0.1 per year. The estimated lower and upper bounds from our Edgeworth binomial model are indicated by E-LB and E-UB, respectively, whilst the estimates from Hull-White (1993) are denoted by HW, and those from Chalasani et al. (1999) are denoted by C-LB, C-UB. All simulations are conducted under 40 time steps with normal skewness (1=0 and kurtosis (2=3, but with various option lives and strikes. Parameter values are selected so the results can be compared with those in the literature.

37.6.3 Pricing European Asian Options under Distributions with Higher Moments
We now consider the examples of call options with higher moments in the underlining distribution. Most initial presumptions are the same as those used for lognormal distribution, except that skewness (1= 0.05 and kurtosis (2= 3.05. We just demonstrate the process for computing the underlying values and their arithmetic averages along each path in the binomial lattice with higher moment consideration. Other pricing procedures discussed earlier for lognormal distribution can be similarly applied to the cases with higher moments in the underlining distribution. 
EXHIBIT 37.5 provides the nodal values in the binomial lattice under distribution with higher moments. The procedure to get these values is demonstrated as below:

1. At node (3,2), the random variable
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 = 0.9894, the resulting binomial density is
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2. We estimate the drift 
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 using P2, x2 and the assumed σ = 0.3, r =0.1 and T = 1. The asset price at node (3,2) is then equal to 
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. The asset prices at other nodes in the final step of the binomial lattice can be calculated similarly. 
3. The upward and downward probabilities under distribution with higher moments are pe= 0.4936 and qe=0.5064. The nodal value, S2,1, can be obtained by solving backwards from the values at nodes (3,2) and (3,1):
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EXHIBIT 37.5 The nodal values in the binomial lattice under distribution with higher moments.
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We next calculate the arithmetic average of the stock prices under distribution with higher moments. The algorithmic process for the average price at node (3,1) is explained below:

1. First, count the number of the paths reaching node (3,1). M(3,1,0), M(3,1,1) and M(3,1,2) all equal to one.

2. The sum of the asset prices over all paths passing through the nodelet (3,1,0), S″(3,1,0) = 100+85.81+73.57+88.95 = 348.33. Similarly S″(3,1,1) = 378.45 and S″(3,1,2)=413.8. 

3. According to Eq. (37.4), the average price at nodelet (3,1,0), Ā (3,1,0) is then equal to 348.33/[(3+1)(1)] = 87.08. Similarly Ā (3,1,1) = 94.61 and Ā (3,1,2) =103.45.

The average of the underlying asset values at each nodelet is denoted in EXHIBIT 37.6.
EXHIBIT 37.6 The arithmetic averages of stock prices under distribution with higher moments.

The top number at each node denotes the arithmetic average of the stock prices and its nodelet position in the binomial lattice is shown in parenthesis.
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The valuation performance of the European Asian option in Table 37.5 is based on the initial stock price S0 = 100, the risk-free rate r = 0.09, and the maturity T = 1 year with varying skewness and kurtosis. The results of the numerical analysis are compared with those of the Edgeworth expansion model by Turnbull and Wakeman (1991) (TW), the modified Edgeworth expansion method by Lévy and Turnbull (1992) (LT), and the four-moment approximation model by Posner and Milevsky (1998) (PM). All these models are considered up to the fourth moments in their valuations. 

For low volatility cases (σ = 0.05 and 0.1) in Table 37.5, our results from in-the-money or at-the-money calls are very close to Monte Carlo estimates, which is the benchmark used by Lévy and Turnbull (1992) under lognormal distribution. This is similar to those of LT and TW. For out-of-the-money calls, our outcomes are the same as theirs under right-skewed conditions. For high volatility cases (σ = 0.3 and 0.5), our outcomes for at-the-money or deep-in-the-money calls approach the results from Monte Carlo simulation with positive skewness and a slight leptokurtic. Under lognormal distribution, when the call is deep-out-of-money, our lower bounds are more accurate than the estimates from all the other methods. The results from Monte Carlo method are consistent with our lower and upper bounds. Overall, our outcomes are better than those of LT and TW, and similar to PM.
Table 37.5 Model comparisons for European Asian option valuations under various skewness and kurtosis

	Strike L
	Vol. σ
	1
	2
	MC
	E-LB
	E-UB
	LT
	TW
	PM

	95
	0.05
	0
	3
	8.81(0.00)
	8.81
	8.81
	8.81
	8.81
	NAN

	100
	0.05
	0
	3
	4.31(0.00)
	4.31
	4.31
	4.31
	4.31
	NAN

	105
	0.05
	0.03
	3
	0.95(0.00)
	0.95
	0.95
	0.95
	0.95
	NAN

	95
	0.1
	0
	3
	8.91(0.00)
	8.91
	8.91
	8.91
	8.91
	NAN

	100
	0.1
	0
	3
	4.91(0.00)
	4.91
	4.91
	4.91
	4.91
	NAN

	105
	0.1
	0.02
	3
	2.06(0.00)
	2.06
	2.06
	2.06
	2.06
	NAN

	90
	0.3
	0
	3
	14.96(0.01)
	14.97
	14.98
	15.00
	14.91
	14.96

	100
	0.3
	0.01
	3
	8.81(0.01)
	8.80
	8.82
	8.84
	8.78
	8.80

	110
	0.3
	0
	3
	4.68(0.01)
	4.68
	4.70
	4.69
	4.69
	4.67

	90
	0.5
	0.01
	3
	18.14 (0.03)
	18.14
	18.21
	18.13
	17.66
	18.14

	100
	0.5
	0
	3.02
	12.98(0.03)
	12.97
	13.03
	13.00
	12.86
	12.97

	110
	0.5
	0
	3
	9.10(0.03)
	9.09
	9.16
	9.12
	9.22
	9.07


Note: E-LB and E-UB indicate the lower and the upper bounds from our model with various skewness (1) and kurtosis (2). The approximations of Lévy and Turnbull (1992) are represented by LT, and of Turnbull and Wakeman (1991) by TW, MC represents the Monte Carlo estimates in the Lévy and Turnbull (1992), and PM represents the four-moment approximation by Posner and Milevsky (1998). The simulations assume the option life T=1 year, the domestic interest rate r=0.09, the time steps N=52 and the initial spot price S0=100.
37.6.4 Pricing American Asian Options under Distributions with Higher Moments 

Finally we compare the price estimates of American Asian options from our Edgeworth binomial model with those from Chalasani et al. (1999) and Hull and White (1993) under distributions having higher moments. As indicated in Table 37.6, if the underlying distribution has negative skewness and positive excess kurtosis while other parameters are the same as in Table 37.3, we find that the results from our model (E-LB=4.813, 4.890, 4.920, 4.937 and E-UB=4.815, 4.891, 4.920, 4.937）are closer to the estimates from Hull-White (with grid size h = 0.003 as used in Hull and White (1993)) than those from Chalasani et al. (C-LB =4.812, 4.888, 4.917, 4.933 and C-UB=4.815, 4.889, 4.918, 4.934). We also adopt the same parameter values used in Table 37.4 but assume an underlying distribution with left-skewness and leptokurtosis for calculating the option price. Our results, as shown in Table 37.7, are again closer to those from Hull-White (with h = 0.005 as used in Hull and White (1993)). The evidence in Tables 37.6 and 37.7 demonstrates that our modified Edgeworth binomial model performs better in simulating American Asian options.
Table 37.6 Model comparisons for American Asian option valuations with various time steps, skewness and kurtosis

	Steps n
	(1
	(2
	E-LB
	E-UB
	C-LB
	C-UB
	HW(h=0.005)
	HW(h=0.003)

	20
	-0.002
	3.00
	4.813
	4.815
	4.812
	4.815
	4.815
	4.814

	40
	-0.046
	3.06
	4.890
	4.891
	4.888
	4.889
	4.892
	4.890

	60
	-0.051
	3.06
	4.920
	4.920
	4.917
	4.918
	4.924
	4.920

	80
	-0.050
	3.05
	4.937
	4.937
	4.933
	4.934
	4.942
	4.936


Note: The American Asian options are valued with initial stock price S0  = 50 dollars, strike K = 50 dollars, option life T = 1.0 year, volatility σ = 0.3 per year, and risk-free rate r = 0.1 per year. The estimated lower and upper bounds from our Edgeworth binomial model are indicated by E-LB and E-UB, respectively, whilst the estimates from Hull-White (1993) with different grid-size h are denoted by HW, and those from Chalasani et al. (1999) are denoted by C-LB, C-UB. All simulations are conducted under various time steps, skewness((1) and kurtosis((2). Parameter values are selected so the results can be compared with those in the literature.
Table 37.7 Model comparisons for American Asian option valuations with various option lives, strikes, skewness and kurtosis.
	Option Life T
	Strike L
	(1
	(2
	E-LB
	E-UB
	C-LB
	C-UB
	HW

	0.5
	40
	-0.030
	3.06
	12.115
	12.115
	12.111
	12.112
	12.115

	0.5
	45
	-0.030
	3.06
	7.260
	7.261
	7.255
	7.255
	7.261

	0.5
	50
	-0.040
	3.04
	3.275
	3.275
	3.269
	3.270
	3.275

	0.5
	55
	0.000
	3.00
	1.150
	1.151
	1.148
	1.148
	1.152

	0.5
	60
	-0.020
	3.25
	0.321
	0.322
	0.320
	0.320
	0.322

	1.0
	40
	-0.041
	3.09
	13.152
	13.153
	13.150
	13.151
	13.153

	1.0
	45
	-0.040
	3.10
	8.551
	8.552
	8.546
	8.547
	8.551

	1.0
	50
	-0.040
	3.05
	4.891
	4.892
	4.888
	4.889
	4.892

	1.0
	55
	-0.003
	3.00
	2.536
	2.538
	2.532
	2.534
	2.536

	1.0
	60
	-0.003
	3.01
	1.207
	1.209
	1.204
	1.206
	1.208

	1.5
	40
	-0.017
	3.00
	13.987
	13.989
	13.984
	13.985
	19.988

	1.5
	45
	-0.017
	3.02
	9.651
	9.653
	9.648
	9.650
	9.652

	1.5
	50
	-0.007
	3.00
	6.199
	6.201
	6.195
	6.197
	6.199

	1.5
	55
	-0.050
	3.01
	3.770
	3.771
	3.767
	3.770
	3.771

	1.5
	60
	-0.007
	3.01
	2.192
	2.194
	2.190
	2.193
	2.194

	2.0
	40
	-0.036
	3.05
	14.712
	14.715
	14.709
	14.712
	14.713

	2.0
	45
	-0.029
	3.05
	10.623
	10.625
	10.620
	10.623
	10.623

	2.0
	50
	-0.026
	3.03
	7.325
	7.327
	7.322
	7.325
	7.326

	2.0
	55
	-0.028
	3.01
	4.886
	4.889
	4.881
	4.885
	4.886

	2.0
	60
	-0.001
	3.02
	3.168
	3.172
	3.167
	3.170
	3.171


Note: The American Asian options are valued with initial stock price S0 = 50 dollars, time steps n = 40, volatility σ = 0.3 per year, and risk-free rate r = 0.1 per year. The estimated lower and upper bounds from our Edgeworth binomial model are indicated by E-LB and E-UB, respectively, whilst the estimates from Hull-White (1993) are denoted by HW, and those from Chalasani et al. (1999) are denoted by C-LB, C-UB. All simulations are conducted under various option lives, strikes, skewness((1) and kurtosis((2). Parameter values are selected so the results can be compared with those in the literature.
37.7 Conclusion
In this chapter, we have developed the modified Edgeworth binomial model to price European and American Asian options with higher moments in the underlying distribution. Many studies in the literature have illustrated significant left-skewness and leptokurtosis for the distribution of the underlying asset. Our model combines the refined binomial lattice with the Edgeworth expansible distribution to include the high-moment parameters. As the algorithm of the Edgeworth binomial tree can greatly enhance the computing efficiency, our modified model would be able to price Asian options faster and with higher precision when the underlying distribution displays higher moments. The numerical results show that this approach can effectively deal with the higher moment issue and provide better option value estimates than those found in various studies in the literature.
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� We set the minimum and maximum values of Vn over paths ω with Z(ω)=z, to be Vnmax(z) = maxωΩ{Vn(ω)|Z(ω)=z} and Vnmin(z) = minωΩ{Vn (ω)|Z(ω)=z}. If Vnmax(zi)≤0, then for all paths ω with Z(ω)= zi, we can deduce Vn+(ω)=0, which implies E(Vn+ zi)=0, and also E(Vn zi) ≤0, which implies E(Vn zi)+=0. Hence, the error bound is zero. Similarly, if Vnmin(zi)≥0, then for all paths ω with Z(ω)= zi, we can deduce Vn+(ω)= Vn (ω), which implies E(Vn+ zi)= E(Vn zi), and also E(Vn zi) ≥0, which implies E(Vn zi)+= E(Vn zi). Therefore, the error bound is again zero.


� To show how Ā2(k, h, a) is derived, we can write  � EMBED Microsoft Equation 3.0 ���.   Because all paths reaching (k, h, a) have the same probability,  Ā2(k, h, a) is the average of � EMBED Microsoft Equation 3.0 ��� over these paths.


� The detailed representation of comonotonic random variables is described in Section 4 from Dhaene et al. (2002a).


� The stop-loss premium with retention d of a random variable X is shown by E[(X-d)+]. See page 7 of Dhaene et al. (2002a) for detailed discussion.
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