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Abstract 

 

This paper proposes a prediction method based on an ordered semiparametric probit model 

for credit risk forecast.  The proposed prediction model is constructed by replacing the linear 

regression function in the usual ordered probit model with a semiparametric function, thus it 

allows for more flexible choice of regression function.  The unknown parameters in the proposed 

prediction model are estimated by maximizing a local (weighted) log-likelihood function, and the 

resulting estimators are analyzed through their asymptotic biases and variances.  A real data 

example for predicting issuer credit ratings is used to illustrate the proposed prediction method.  

The empirical result confirms that the new model compares favorably with the usual ordered 

probit model. 
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1. Introduction 

 

Credit ratings play an important role in capital markets.  Under the New Basel Capital 

Accord (Basel II), credit ratings will play an even more central role than they have so far.  There 

are two basic types of credit ratings, the bond rating and the issuer credit rating.  While the former 

measures the likelihood of the default or delayed payment of a bond issue, the latter is an overall 

assessment of the creditworthiness of a company.  Currently, there are many widely recognized 

credit rating agencies, such as Moody’s Investors Service and Standard and Poor’s Ratings 

Services (S&P’s), etc.  They routinely provide credit ratings for bonds and companies. 

This study focuses on the S&P’s long-term issuer credit rating (LTR).  According to the 

definition given by S&P’s, the LTR focuses on the obligor’s capacity and willingness to meet its 

long-term financial commitments.  Based on the Compustat North America (COMPUSTAT) 

database, in year 2007, there were 8010 companies listed on the New York Stock Exchange, 

American Stock Exchange, or NASDAQ.  However, among those 8010 companies, there were 

only 18.96% (1519) companies having S&P’s LTRs.  This result indicates that most of companies 

listed on those stock exchanges do not have S&P’s LTRs, which makes their rating predictions 

quite valuable to practitioners and regulators.  Accordingly, the purpose of this paper is to forecast 

ratings for those companies “without” S&P’s LTRs.  For two reasons, we do not pursue the issue 

of rating forecast for companies “with” S&P’s LTRs.  First, if a company is once rated by S&P’s, 

then it will be rated again unless a special event, for example bankruptcy, happens to the company.  

Second, the continuously rated companies have relatively unchanged rating categories in general 

(Galil, 2003; Pettit et al., 2004).  Thus it seems less interesting in predicting the ratings of these 

companies. 

There are several well-known statistical techniques for constructing credit rating 

predictions.  These techniques include multiple regression analysis (Horrigan, 1966; Pouge and 

Soldofsky, 1969; West, 1970), multiple discriminant analysis (Pinches and Mingo, 1973, 1975; 

Altman and Katz, 1976), ordered linear probit model (OLPM; Kaplan and Urwitz, 1979; 

Ederington, 1985; Gentry et al., 1988; Hwang et al., 2008), and ordered and unordered linear logit 

models (Ederington, 1985), etc.  Altman et al. (1981) provides a detailed introduction of 

statistical classification models.  The common principal of these approaches is that they are 

developed using single-period data.  Credit rating forecasting models based on multiple-period 

data with independent assumption include, for example, Blume et al. (1998), Poon (2003), and 

Güttler and Wahrenburg (2007) employing the idea of OLPM.  Other approaches based on 

machine learning techniques, for example, Bayesian networks (Wijayatunga et al., 2006) and 

support vector machines and neural networks (Huang et al., 2004) were also considered in the 

literature for credit rating prediction. 
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To forecast S&P’s LTRs, the prediction methods based on OLPM and an extension of 

OLPM will be used in this paper.1   The OLPM is simply constructed by imposing a linear 

regression relationship between S&P’s LTRs and predictor variables.  Its important parameters 

are determined by maximizing a log-likelihood function.  However, if the underlying regression 

function is not linear, then the advantages of OLPM in explaining and predicting will not be 

realized.  To avoid this potential pitfall, we show in this paper that the idea of semiparametric 

logit model in Hwang et al. (2007) can be directly extended to OLPM.  Specifically, we shall 

propose an ordered semiparametric probit model (OSPM) for credit rating prediction by replacing 

the linear regression function in OLPM with a semiparametric function.  The proposed OSPM is 

built on the works of OLPM but needs not assuming any parametric form for the regression 

function.  Thus it is much more flexible in modeling the regression function.  Furthermore, the 

proposed method is developed under the concept of local likelihood, and it turns out that the 

important parameters in OSPM can be estimated by maximizing a local (weighted) log-likelihood 

function.  Thus the required computation for OSPM is as simple as that for OLPM. 

To apply OLPM and OSPM to predict S&P’s LTRs, the twenty-four potential predictors in 

Hwang et al. (2008) for studying important predictors of S&P’s LTRs in year 2005 were 

considered in our data analysis section.  These variables include four market-driven variables 

(Shumway, 2001; Bharath and Shumway, 2008), nineteen accounting variables (Altman, 1968; 

Poon, 2003; Pettit et al., 2004), and industry effects (Chava and Jarrow, 2004; Pettit et al., 2004).  

The studied data were collected from COMPUSTAT and Center for Research in Security Prices 

(CRSP) databases.  Our sample consisted of 779 companies receiving S&P’s LTRs in April 2007 

and having complete values of the twenty-four potential predictors.  The sample was further 

divided into the estimation sample and holdout sample based on the longevity of S&P’s LTR 

(Hwang et al., 2008).2  According to S&P’s Research Insight North America Data Guide (2004, p. 

54), S&P’s began to use the term LTR on September 1, 1998.  Companies receiving S&P’s LTRs 

                                                 
1Due to the superiority in explaining and predicting, OLPM has been adopted for multiple-class prediction 
by a number of studies such as Kaplan and Urwitz (1979) and Gentry et al. (1988), etc.  Also, the test 
procedure of sample selection bias is only available for OLPM (Greene, 2002).  On the other hand, it is not 
suggested using discrete explanatory variables in multiple discriminant analysis (Johnson and Wichern, 
2002, p. 641).  In this paper, industry effects on S&P’s LTR were estimated through coefficients of six 
industry indicator variables.  Given these industry indicator variables, it is not adequate to use multiple 
discriminant analysis to predict S&P’s LTRs. 
 
2Given the pool of companies with S&P’s LTRs, our estimation companies solely correspond to the rated 
ones, and our holdout companies the newcomers.  Their purified composition agrees with our purpose to 
forecast ratings for companies without S&P’s LTRs.  On the other hand, one may separate the sampled 
companies by random allocation.  Random allocation has the advantage of eliminating the need to test for 
selection bias since the resulting estimation and holdout samples have the same composition structure.  
However, each of the latter samples contains both rated companies and newcomers.  Such mixed 
composition does not agree with our prediction purpose. 
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in consecutive nine years (April 1999 − April 2007) were classified into the estimation sample.  

The rest of the sampled companies were classified into the holdout sample.  Based on the division 

principle, 413 companies were divided into the estimation sample and 366 companies into the 

holdout sample. 

To examine whether our estimation and holdout samples induced selection bias, a 

procedure based on OLPM with sample selection was performed using LIMDEP 8.0 to test the 

null hypothesis of no selection bias caused by the above sample division principle.  The result of 

the test shows no rejection of the null hypothesis of interest at 5% level of significance.  Before 

performing the selection bias test, a forward selection procedure based on minimizing 

classification error rate on the estimation sample (Härdle et al., 2006) was used to objectively 

determine effective predictors for OLPM.  The final list of the selected predictors includes 

industry effects, two market-driven variables, and two accounting variables measuring a firm’s 

financial leverage and profitability.  The values of estimated coefficients of the selected market-

driven and accounting variables all agree with their expected signs.  This indicates that market-

driven variables and industry effects are also important to determine S&P’s LTRs.  Our variable 

selection result coincides with that obtained by Hwang (2008) for predicting ratings in year 2005.  

On the other hand, to study the difference between the unsolicited and the solicited ratings, Poon 

(2003) suggested profitability and sovereign credit risk as two major factors in determining 

S&P’s LTRs.  Furthermore, to assess biases in credit ratings assigned by Moody’s and S&P’s for 

near-to-default issuers, Güttler and Wahrenburg (2007) used accounting and macroeconomic 

variables as major determinants of issuer credit ratings. 

The remainder of this paper is organized as follows.  In Section 2, our methodology for 

forecasting credit ratings based on OSPM is developed using concepts similar to those based on 

OLPM.  In Section 3, we describe one real data set and provide some summary statistics.  The 

summary statistics show that the predictors under consideration have reasonable power in 

discriminating the creditworthiness of companies.  The real data set was analyzed using methods 

based on OLPM and OSPM.  The prediction performance of each method was measured by the 

total error rate obtained from the holdout sample.  By the error rates summarized in Section 3, we 

conclude that the prediction method based on OSPM has better performance, and has potential to 

be a powerful credit rating prediction method.  Concluding remarks and future research topics are 

contained in Section 4.  Our theoretical results are presented in Appendix A.  Finally, sketches of 

the proofs are given in Appendix B. 

 

2. Methodology 

 

In this section, we first briefly review the formulation of OLPM.  The detailed introduction 

of OLPM can be referred to Kaplan and Urwitz (1979) and the manuscript by Borooah (2002).  
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Then we describe the basic idea of OSPM and develop the methodology for estimating unknown 

quantities of OSPM. 

 

2.1.  OLPM 

 

The OLPM is defined by imposing a linear regression relationship between S&P’s LTRs 

and predictor variables.  It is developed using the estimation sample composed of observations 

 for   The value of ( , , ),i i iY x z 1, , .i = " n jYi =  indicates that the S&P’s LTR of the i-th 

company belongs to the category ,j  where {1, , }j m∈ "  and   Here  stands for the 

total number of categories among S&P’s LTRs.  The larger the value of  the better the S&P’s 

LTR category of the i-th company.  The values of  and  are collected on the i-th company 

from the  continuous and  discrete explanatory variables 

2.m ≥ m

,iY

ix iz

1×d 1×q X  and  respectively.  Our 

aim is to predict the S&P’s LTR category for a given company without S&P’s LTR. 

,Z

Given the estimation sample, the OLPM is defined by 
*

*
1

  ,

,    if ,    for 1, , .
i i i i

i j i j

Y x z

Y j Y j m

ξ ρ ϕ ε

δ δ−

⎧ = + + +⎪
⎨

= < ≤ =⎪⎩ "
                                                                    (1) 

Here ,ξ  ,ρ  and ϕ  are   and ,11× ,1 d× q×1  vectors of parameters,  latent variables relating 

to S&P’s LTR assessment, and 

*
iY

iε  independent standard normal random variables.  Also 

mδδ  , ,0 "  are threshold parameters discretizing the real line into m  intervals, where the values 

of  are of ascending order and satisfy the conditions jδ ,0 −∞=δ   and ,01 =δ .∞=mδ   Set 

). , ,( 12 −= mδδδ "  

Given the model (1), the values of ,ξ  ,ρ  ,ϕ  and δ  can be simply estimated by the 

maximum likelihood method (McCullagh, 1980).  Let ˆ,ξ  ˆ ,ρ  ˆ,ϕ  and  be their maximum 

likelihood estimates obtained by maximizing the log-likelihood function 

δ̂

, ,
1 1

( , , , )   ( )  ln( )
n m

i i j
i j

I Y jξ ρ ϕ δ −
= =

= = Φ −Φ∑ ∑A 1i j

i j j i i

 

of the estimation sample, where , (   ),x zδ ξ ρ ϕΦ − − − )(Φ =  •Φ  is the cumulative 

distribution function of standard normal random variable, and )(•I  stands for the indicator 

function.  Using the maximum likelihood estimates ˆ,ξ  ˆ ,ρ  ˆ,ϕ  and  by the model (1), the 

S&P’s LTR category of a given company with predictor values  is predicted by 

,δ̂

),( 00 zx

0 0 1 0 0
ˆ ˆ ˆˆ ˆ ˆ( , ) ,    if    ,    for some {1, , }.OLPM j jY x z j x z j mδ ξ ρ ϕ δ−= < + + ≤ ∈ "                    (2) 
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McCullagh (1980) showed that the maximum likelihood estimates ˆ,ξ  ˆ ,ρ  ˆ,ϕ  and  are 

consistent for 

δ̂

,ξ  ,ρ  ,ϕ  and ,δ  respectively.  Thus, the resulting predicted regression function 

value 0
ˆ ˆ ˆ  0x zξ ρ ϕ+ +  converges to the true regression function value 0  0.x zξ ρ ϕ+ +   This 

result shows that OLPM is an efficient prediction model if its regression function is correctly 

specified. 

Hwang et al. (2008) pointed out that the prediction rule  in (2) is equivalent 

to basing on cutoff value 1/  

0 0
ˆ ( , )OLPMY x z

2 :

0 0 0, 1 0,
ˆ ˆ ˆ( , ) ,    if  1/ 2 ,    for some {1, , },OLPM j jY x z j j m−= Φ < ≤ Φ ∈ "                                 (3) 

where  0,0
ˆ 0,Φ = 0, 0 0

ˆ ˆˆ ˆ ˆ(   j j ),x zδ ξ ρ ϕΦ = Φ − − −  for 1, , 1,j m= −"  and   For 

improving the performance of the prediction rule based on OLPM, they followed the idea of 

Altman (1968), Ohlson (1980), and Begley et al. (1996), and suggested replacing cutoff value 

 in (3) with some cutoff value   The resulting prediction rule is denoted by 

0,
ˆ 1.mΦ =

1/ 2 [0,1].p∈

0 0 0, 1 0,
ˆ ˆ ˆ( , ) ,    if  ,    for some {1, , }.OLPM j jY x z j p j m−= Φ < ≤ Φ ∈ "                                    (4) 

In order to decide a proper data-based cutoff value for  usually one would use the estimation 

sample to evaluate the performance of the classification scheme.  In doing so, there are three 

types of “in-sample” error rate occurred on the estimation sample: 

,p

type I error rate   1

1

ˆ( )  { ( , ) },
n

in OLPM i i i
i

p n I Y x z Yα −

=

= >∑  

type II error rate   1

1

ˆ( )  { ( , ) },
n

in OLPM i i i
i

p n I Y x z Yβ −

=

= <∑  

total error rate   ( ) ( ) ( ).in in inp p pγ α β= +  

Using the estimation sample, ( )in pα  is the rate of misclassifying a company to a higher rating 

category, and ( )in pβ  the rate of misclassifying a company to a lower rating category.  If the type 

I error would cause severe losses to investors, then it is important to control the magnitude of 

( ).in pα   Thus, a proper data-based cutoff value  for  may be determined such that ˆ ( )OLPMp u p

( ) , [0,1]
ˆ{ ( )} min ( ),

in
in OLPM inp u p

p u p
α

γ γ
≤ ∈

=                                                                                       (5) 

for each   This approach is to control the magnitude of in-sample type I error rate [0,1].u∈

( )in pα  to be at most  so that the in-sample total error rate ,u ( )in pγ  is minimal.  On the other 

hand, if the type II error would cause severe losses to investors, then we may control the 

magnitude of ( )in pβ  instead.  In practice, the value of [0,1]u∈  is determined by investors.  If 

there is no restriction on the magnitude of ( )in pα  and ( ),in pβ  then we simply take   The 1.u =
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suggested cutoff value of  in Hwang et al. (2008) is   Using the prediction rule based 

on OLPM with our data-based cutoff value  the S&P’s LTR category of the given 

company with predictor values  is predicted by 

p ˆ (1).OLPMp

ˆ ( ),OLPMp u

),( 00 zx

0 0 0, 1 0,
ˆ ˆ ˆˆ( , ) ,    if  ( ) ,    for some {1, , },OLPM j OLPM jY x z j p u j m−= Φ < ≤ Φ ∈ "                       (6) 

for each   The prediction rule  in (6) will be used in Section 3 to analyze 

a real data example. 

[0,1].u∈ 0 0
ˆ ( , )OLPMY x z

 

2.2.  OSPM 

 

By the nature of linear regression function, OLPM has advantages of simple computation 

and interpretation.  However, if it uses an improper regression function, then it has a danger to 

reach erroneous prediction.  This limitation of OLPM can be improved by removing the 

restriction that its regression function is linear.  In this paper, we suggest an OSPM which is more 

flexible in modeling the regression function.  The OSPM is constructed by replacing the linear 

regression function in OLPM with a semiparametric regression function.  It is defined by 

⎪⎩

⎪
⎨
⎧

=≤<=

++=

− . , ,1for    , if   ,

, )(
*

1

*

mjYjY

zxHY

jiji

iiii

"ττ

εθ
                                                                          (7) 

Here mττθ  , , , 0 "  are the same as 0,  ,  ,  mϕ δ " δ  in the model (1), respectively, and  is 

an unknown but smooth function of the value 

)(xH

x  of the d-dimensional continuous explanatory 

variable   Set .X 2 1( , , ).mτ τ τ −= "  

Following the same development of ( , , , ),ξ ρ ϕ δA  the corresponding log-likelihood 

function of the estimation sample based on OSPM is expressed by 

,)ln(  )(  ) , ,(
1 1

*
1,

*
,

* ∑ ∑
= =

−Φ−Φ==
n

i

m

j
jijii jYIH τθA  

where   For a given company with predictor values  if 

 

}. )({*
, iijji zxH θτ −−Φ=Φ ), ,( 00 zx

),( 0xH ,θ  and τ  can be efficiently estimated by   and ),(ˆ
0xH ,θ̂ ,τ̂  then, by the model (7), its 

S&P’s LTR category can be predicted by 

0 0 1 0 0
ˆˆ ˆˆ ˆ( , ) ,    if  ( )  ,    for some {1, , }.OSPM j jY x z j H x z j mτ θ τ−= < + ≤ ∈ "                         (8) 

The same developments (3)-(6) can be applied to (8) for OSPM.  Let  be 

similarly defined.  Thus the prediction rule  in (8) can be improved as 

ˆ ( )OSPMp u

0 0
ˆ ( , )OSPMY x z

* *
0 0 0, 1 0,

ˆ ˆ ˆˆ( , ) ,    if  ( ) ,    for some {1, , },OSPM j OSPM jY x z j p u j m−= Φ < ≤ Φ ∈ "                        (9) 
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for each  where  [0,1],u∈ *
0,0

ˆ 0,Φ = *
0, 0 0

ˆˆˆ ˆ{ ( )  }j j ,H x zτ θΦ = Φ − −  for  and 

  The prediction rule  in (9) will be used in Section 3 to analyze a real 

data example.  A local likelihood method will be employed in Sections 2.3 and 2.4 to estimate 

unknown parameters  

1, , 1,j m= −"

*
0,

ˆ 1.mΦ = 0 0
ˆ ( , )OSPMY x z

),( 0xH ,θ  and τ  of OSPM. 

 

2.3.  A local likelihood method for estimating parameters in OSPM 

 

We now apply the local likelihood concept (Tibshirani and Hastie, 1987; Staniswallis, 1989; 

Fan et al., 1995; Hwang et al., 2007) to develop a procedure for estimating  ),( 0xH ,θ  and τ  in 

OSPM, where  is any given value of the d-dimensional continuous 

explanatory variable   The basic idea of the local likelihood method is to center the data 

around  and weight the log-likelihood such that it places more emphasis on those observations 

nearest to   It can be simply performed by first considering a neighborhood 

 of 

0 01 0( , , )T
dx x x= "

.X

,0x

.0x

} , ,1each  for   , ||  :),,({)( 010 dkbxuuuuxS kk
T

db "" =≤−== 0.x   Here  is some 

positive constant to be determined later by the estimation sample, and called the bandwidth.  If 

the value of b  is small enough and  belongs to  then Taylor’s first order expansion 

says that   This result means that such  in 

b

ix ),( 0xSb

(1)
0 0 0) ( ) ( ) ( ).T

i iH x H x x x≈ + −(H x )( ixH

*( ,  ,  )H θ τA  can be approximated by ),( 010 xxi −+ηη  where 0η  is a scalar parameter 

representing  and  a  vector of parameters standing for   Set )( 0xH 1η d×1 (1)
0( ) .TH x

). ,( 10 ηηη =  

Based on the above discussion, a local likelihood method for making inference about 

) , ,( τθη  can be proposed by modifying  to consider the following “local 

(weighted)” log-likelihood function 

) , ,(* τθHA

*
0 0 , , 1

1 1
( , , ;  )   ( )  ln( )  ( ),

n m

i i j i j
i j

ix I Y j W xη θ τ −
= =

= = Φ −Φ∑ ∑ D DA  

where   The simplest weight  assigned to the 

observation  in  is the indicator value 

}. )( { 010, iijji zxx θηητ −−−−Φ=ΦD )( ixW

) , ,( iii zxY ) ; , ,( 0
*
0 xτθηA )}.({ 0xSxI bi ∈   In this case, it 

can be mathematically defined as 0 01
( ) ( ) {( ) / },dd

i b i ik kk
W x K x x b K x x b−

=
= − = −∏  where K  

is the uniform probability density function over [ 1,1],−  also called the kernel function, and 

 .) , ,( 1
T

idii xxx "=
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Conceptually, a more general weighting scheme can be used for defining weights  

when constructing the local log-likelihood function.  This can be achieved by taking 

)( ixW

K  as a 

symmetric and unimodal probability density function supported on the interval [ 1   The 

results in the literature showed that the choice of bandwidth b  plays important role, but the 

choice of kernel function 

,1].−

K  is not very important in the weighting scheme.  Some discussions of 

the kernel weighting method can be found in the monographs by Eubank (1988), Müller (1988), 

Härdle (1990, 1991), Scott (1992), Wand and Jones (1995), Fan and Gijbels (1996), and Simonoff 

(1996).  In this paper, we select )()( 0xxKxW ibi −=  with a general K  in all analyses. 

Set  as the maximizer of  where )~ ,~ ,~( τθη ), ;,,( 0
*
0 xτθηA 0 1( , ).η η η=� � �   We define 

00
~)(~ η=xH  to indicate that it is an estimate of   We also point out that ).( 0xH θ  and τ  are 

global parameters and their corresponding estimates θ~  and τ~  produced from  

may not be efficient, since such estimates are derived by maximizing a local log-likelihood 

function depending on   In Section 2.4, more efficient estimates of  

) ;,,( 0
*
0 xτθηA

.0x ),( 0xH ,θ  and τ  can be 

achieved. 

 

2.4.  More efficient estimates of parameters in OSPM 

 

More efficient estimates of  ),( 0xH ,θ  and τ  can be derived using the following two-step 

procedure.  We first note that, for each value  an initial estimate ,ix )(~
ixH  of  can be 

obtained by the method outlined in Section 2.3.  The two-step procedure includes: 

)( ixH

Step 1: θ  and τ  are estimated by maximizing the pseudo log-likelihood function 

,)~~ln(  )(  ) ,(
1 1

1,,
*
1 ∑ ∑

= =
−Φ−Φ==

n

i

m

j
jijii jYIτθA  

where }. )(~{~
, iijji zxH θτ −−Φ=Φ   Here *

1( , )θ τA  is obtained by replacing each  in )( ixH

*( , , )H θ τA  with its initial estimate ).(~
ixH   Set ˆ ˆ( , )θ τ  as the maximizer of *

1( , ).θ τA   The 

estimates of ) ,( τθ  are taken as  ˆ ˆ( , ).θ τ  

Step 2:  is estimated by maximizing the pseudo local log-likelihood function )( 0xH

),(  )ˆˆln(  )(   ) ;( 0
1 1

1,,0
*
2 xxKjYIx ig

n

i

m

j
jijii −Φ−Φ==∑ ∑

= =
−

DDA η  
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where   Here  is obtained by replacing }. ˆ)( ˆ{ˆ
010, iijji zxx θηητ −−−−Φ=ΦD ) ;( 0

*
2 xηA θ  and 

τ  in  with their estimates  and ) ;,,( 0
*
0 xτθηA θ̂ τ̂  produced in Step 1.  Set )ˆ ,ˆ(ˆ 10 ηηη =  as the 

maximizer of   The estimate of  is given by  ). ;( 0
*
2 xηA )( 0xH .ˆ)(ˆ

00 η=xH

Note that in Step 2 we have used a different bandwidth g  in the local likelihood method.  

We allow b  and g  to be different in the analysis but emphasize that both values will be 

determined by the estimation sample (see our proposal given in Section 2.5).  We suggest that the 

final estimates of  ),( 0xH ,θ  and τ  be defined by   and ),(ˆ
0xH ,θ̂ ,τ̂  respectively.  Their 

theoretical properties will be given in Appendix A. 

 

2.5.  Choosing the kernel function K  and the values of  ( , , )b g p

 

Our Theorem 1 in Appendix A shows that   and ),(ˆ
0xH ,θ̂ τ̂  are consistent estimators of 

 ),( 0xH ,θ  and ,τ  respectively.  This result means that the prediction rule  in (9) is 

reliable.  To compute its value, we first need to choose the kernel function 

0 0
ˆ ( , )OSPMY x z

K  and the values of 

  Remark 1 in Appendix A points out that, in the sense of yielding smaller asymptotic 

mean integrated square error of  the optimal 

( , , ).b g p

0
ˆ ( ),H x K  is the Epanechnikov kernel defined as 

 and the optimal value of ),1|(|)1)(4/3()( 2 ≤−= tIttK g  is of larger order than that of   Thus 

our kernel function 

.b

K  in applications is taken as the Epanechnikov kernel.  But the optimal 

values of ( ,  are not available in practice for depending on the unknown factors )b g ( ),H x  ,θ  

and .τ  

To choose the values of  we suggest considering the in-sample type I, type II, and 

total error rates of the classification scheme based on OSPM in (9) as functions of ( ,  

denoted as 

( , , ),b g p

, ),b g p

( , , ),in b g pα  ( , , ),in b g pβ  and ( , , ),in b g pγ  respectively.  The definition of in-

sample error rates has been given in Section 2.1.  The proper values for ( ,  are then 

simultaneously determined so that 

, )b g p

( , , )in b g pγ  is minimal, subject to the constraints  

 and 

[0,1],p∈

0 ,b g< < ( , , ) ,in b g p uα ≤  for each [0,1].u∈   Such selected values for ( ,  are 

denoted as  

, )b g p

ˆ ˆ ˆ{ ( ), ( ), ( )}.OSPMb u g u p u
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2.6.  Measuring prediction performance 

 

The performance of the prediction rule based on OSPM in (9) is measured by the “out-of-

sample” error rates.  These error rates are evaluated on the holdout sample.  Suppose that the 

holdout sample is composed of observations ( ,  for  ,  ),i i iY x z� � � 01, , .i n= "   Using the estimation 

sample, the Epanechnikov kernel, and the selected values  the value of 

 for each data point ( ,

ˆ ˆ ˆ{ ( ), ( ), ( )},OSPMb u g u p u

ˆ ( ),iH x� )i ix z� �  in the holdout sample and those of θ̂  and τ̂  can be 

computed.  The S&P’s LTR category for a company with predictor values ( , )i ix z� �  in the holdout 

sample is predicted by  as defined in (9).  After the evaluation procedure is 

completed for each company in the holdout sample, the out-of-sample error rates for the 

prediction rule based on OSPM are defined by 

ˆ ( , )OSPM i iY x z� �

type I error rate    
0

1
0

1

ˆ( )  { ( , ) },
n

out OSPM i i i
i

u n I Y x z Yα −

=

= >∑ �� �

type II error rate    
0

1
0

1

ˆ( )  { ( , ) },
n

out OSPM i i i
i

u n I Y x z Yβ −

=

= <∑ �� �

total error rate   ( ) ( ) ( ),out out outu u uγ α β= +  

for each   Given the holdout sample, the out-of-sample error rates can be similarly 

defined for the prediction rule based on OLPM in (6). 

[0,1].u∈

 

3. An empirical study 

 

In this section, an empirical study was performed to investigate the performance of the two 

prediction rules in (6) and (9) based on OLPM and OSPM, respectively. 

 

3.1.  The data 

 

Each sampled company must: (i) be listed on the New York Stock Exchange, American 

Stock Exchange, or NASDAQ, (ii) adopt calendar fiscal year, (iii) not be a financial services 

company with the SIC code 6000-6999, (iv) have a S&P’s LTR in April 2007, and (v) have 

complete values of the twenty-four potential predictors for studying S&P’s LTRs in April 2007.  

The criterion (i) guarantees that market-driven variables are available.  The criterion (ii) 

synchronizes the timing of predictors in the sense that all market-driven and accounting variables 

cover the same calendar year.  The criterion (iii) excludes the financial services companies since 

they are subject to regulations and adopt different accounting conventions.  The criterion (iv) 
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makes sure that the S&P’s LTR is available.  Finally, the criterion (v) excludes the companies 

with incomplete potential predictor values.  The data were collected from both COMPUSTAT 

and CRSP databases.  Since S&P’s considers predictor values as their three-year averages, this 

study follows the same method (Blume et al., 1998; Poon, 2003).  Thus, the value of each of the 

twenty-four potential predictors for studying S&P’s LTRs in April 2007 was taken as the average 

of its values available from the two databases in years 2004, 2005, and 2006. 

Based on the COMPUSTAT database, there were 3785 companies satisfying the selection 

criteria (i)-(iii), but only 918 companies among them receiving S&P’s LTRs in April 2007.  

However, among those 918 companies, there were 784 companies having complete values of the 

twenty-four potential predictors for studying S&P’s LTRs in April 2007.  The missing data 

problem is not unusual in applications, especially when there are many predictors in the model.  

However, as long as the missingness occurs at random then the sample will not introduce 

systematic bias in our analyses (Allison, 2001; Little and Rubin, 2002).  We have no reason not to 

believe that the missingness occurred in COMPUSTAT and CRSP databases is missing at 

random.  On the other hand, in order to study industry effects on S&P’s LTRs, the industries were 

classified by the first digit in the four-digit SIC code.  Among the 784 companies, there were only 

three companies having SIC code less than 1000 and two companies carrying SIC code greater 

than 9000.  These five companies were dropped from the sample. 3   Thus our final sample 

consisted of 779 companies. 

 For purpose of later analysis, the final sample was further divided into the estimation 

sample and the holdout sample based on the longevity of S&P’s LTR.  The reason for adopting 

this division principle has been given in footnote 2 in Section 1.  According to S&P’s Research 

Insight North America Data Guide, S&P’s began using the term LTR on September 1, 1998.  

Companies receiving S&P’s LTRs in consecutive nine years (April 1999 − April 2007) were 

classified into the estimation sample.  The rest of the sampled companies were classified into the 

holdout sample.  Among our 779 sampled companies, there were 413 and 366 estimation and 

holdout companies, respectively.  Table 1 presents the frequency distributions of the estimation 

and holdout companies according to different S&P’s LTR categories and SIC codes. 

S&P’s LTR ranges from AAA to D.  Panel A of Table 1 presents the frequency distribution 

of the sampled companies according to their S&P’s LTRs.  Based on the result from the 

estimation sample, it seems reasonable to group S&P’s LTRs into three categories: {Below BBB} 

                                                 
3If such industries with few companies are included in the prediction model, then the resulting number of 
industry indicator variables is increased, thus the estimates of parameters in the corresponding model might 
become less precise. 
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as category 1, {BBB} as category 2, and {AAA, AA, A} as category 3.4  According to S&P’s 

opinion, firms in the {AAA, AA, A} category mean that they have demonstrated strong capacity 

to meet their financial obligations.  Firms receiving BBB rating mean that they have adequate 

capacity to meet their financial commitments.  However, firms receiving LTR below BBB mean 

that they are regarded as having speculative characteristics.  Panel B of Table 1 gives the 

frequency distribution of the sampled companies according to the three S&P’s LTR categories.  

Note that the companies in our holdout sample are newcomers in the pool of companies with 

S&P’s LTRs, in contrast to those in the estimation sample.  Panel B of Table 1 shows that the 

holdout companies have lower S&P’s LTRs on the average.  Such result agrees with the 

observation reported in Pettit et al. (2004) and Hwang et al. (2008).  Blume et al. (1998) also 

reported the similar observation for bond ratings.  The distribution of the companies in the 

holdout sample shows that there are about 68.6% companies in the speculative S&P’s LTR 

category.  In contrast, there are only about 35.6% companies in the estimation sample with the 

speculative S&P’s LTR category. 

The twenty-four potential explanatory variables for studying S&P’s LTRs in year 2007 

include four market-driven variables, nineteen accounting variables, and industry effects.  Their 

definitions are given in Table 2.  The four market-driven variables are excess return (EXRET), 

relative size (RSIZE), standard deviation of monthly returns (SIGMA), and KMV-Merton default 

probability (KMV).5  The nineteen accounting variables measure different aspects (size, financial 

leverage, coverage, cash flow, profitability, and liquidity) of financial health of a company.  The 

industry effects were estimated through the coefficients of six industry indicator variables in the 

model.  Using the data in the estimation sample, Table 3 shows summary statistics and F-tests of 

equality of the means among the three S&P’s LTR categories for the market-driven variables and 

accounting variables.  The p-values in Table 3 show that testing the null hypothesis of equal 

means is significant at 0.05 level for each of the four market-driven variables and are significant 

for all accounting variables, except EM, QR, and CASHR.  This result indicates that most of the 

variables considered in this paper are effective predictive variables.  Table 3 also shows that, on 

the average, if a company has larger firm size, smaller financial leverage, larger coverage, larger 

cash flow, or larger profit, then it has better S&P’s LTR category. 

 

                                                 
4 The estimation sample was divided into the three categories so that the resulting three cells have 
approximately equal sizes.  On the other hand, if one divides the estimation sample into more categories, 
then some cells have smaller sizes and the number of threshold parameters increases.  Thus the resulting 
estimates of parameters in the corresponding model might become less precise. 
 
5Since the computation of KMV-Merton default probability requires the market value of equity, it is treated 
as a market-driven variable.  Its detailed computational procedure can be referred to Bharath and Shumway 
(2008). 
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3.2.  Testing selection bias 

 

To examine whether our criterion for dividing the overall sample into estimation and 

holdout samples induced selection bias, the procedure of OLPM under our particular sample 

selection was performed.  This procedure was designed by simultaneously applying OLPM to the 

estimation sample, and applying the two-class linear probit model to the particular sample in 

which the classes 0 and 1 were assigned respectively to the holdout and estimation companies 

(see Model 1 of Table 5).  The detail of this approach can be found in Greene (2002).  Before 

performing it, a forward selection procedure based on minimizing in-sample total error rate was 

first used to objectively determine effective predictors for OLPM.  The in-sample total error rate 

was computed using the classification scheme based on OLPM in (3) for simplicity.  The variable 

selection procedure asked that the newly entered variable must be able to reduce at least one 

percent of in-sample total error rate of the classification scheme using those already entered 

variables.  Table 4 gives the variable selection result.  It shows that the final list of the selected 

predictors in OLPM includes LDC, ROE, RSIZE, SIGMA, and industry effects.  Results in Table 

3, by using F-test for testing equality of three means (corresponding to the three S&P’s LTR 

categories), show that the last four selected continuous predictors are all significant at the 1% 

level. 

Using the five selected variables, Table 5 shows the results obtained from performing the 

procedure of OLPM, under our particular sample selection, based on the application of LIMDEP 

8.0.  Panel C of Model 1 in Table 5 shows that the null hypothesis of 0corr =  was not rejected 

at 5% level of significance.  Here the null hypothesis of 0corr =  stands for no sample selection 

bias caused by our criterion of dividing the overall sample.  On the other hand, Model 2 in Table 

5 shows the results of OLPM, including p-value of the chi-squared test for model fit.  It is also of 

interest to note that by comparing the parameter estimates of the two OLPMs (in Models 1 and 2 

of Table 5), we find out that their values are approximately equal.  Thus since there is no sample 

selection bias, the results of Model 2 are adopted for predicting S&P’s LTR categories for 

companies in the holdout sample. 

It is important to note that the two selected predictors SIGMA and LDC measure various 

aspects of risk and financial leverage of an issuer, respectively.  The larger the values of these 

two predictors (SIGMA and LDC), the lower the S&P’s LTR category.  That is, these two 

selected predictors should be negatively correlated with rating, and the signs of their coefficients 

should be negative.  Another two selected predictors RSIZE and ROE stand for the market 

capitalization and profitability of an issuer, respectively.  The larger the values of these two 

predictors, the better the creditworthiness of an issuer.  This implies that RSIZE and ROE should 

be positively correlated with rating, and the signs of their coefficients should be positive.  From 
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Model 2 of Table 5, the signs of the values of estimated coefficients for these four selected 

predictors LDC, ROE, RSIZE, and SIGMA all agree with our expectation.  Model 2 also shows 

that not all industries have the same effect on S&P’s LTRs, thus the industry effects are useful for 

predicting ratings. 

 

3.3.  Computational procedures 

 

In computing OSPM, the values of the four selected continuous predictors LDC, ROE, 

RSIZE, and SIGMA were first divided by their sample standard deviations so that they have the 

same scale.  This is important, since the influence of the predictor with very large range in 

estimating the optimal values of ( ,  can be avoided.  The kernel function , )b g p K  was taken as 

the Epanechnikov kernel. 

A grid-search approach was used in computing the optimal values of ( ,  for OSPM.  

The values of 

, )b g p

( , , )in b g pγ  on the equally spaced logarithmic grid of 51 51 1001× ×  values of 

 in  were computed.  See Marron and Wand (1992) for a 

discussion that an equally spaced grid of parameters is typically not a very efficient design for 

this type of grid search.  Given each value of 

( , , )b g p 5[0.5,3] [0.5,3] [10 ,1]−× ×

],1,0[∈u  the global minimizer 

 of ˆ ˆ ˆ{ ( ), ( ), ( )}OSPMb u g u p u ( , , )in b g pγ  on the grid points with restrictions  

 and 

[0,1],p∈

0 ,b g< < ( , , )in b g p uα ≤  was taken as the optimal values of  ( , , ).b g p

Using the estimation sample and the values of  Figure 1 shows the 

plot of 

ˆ ˆ ˆ{ (1), (1), (1)},OSPMb g p

ˆ{ , ( )}jx H x  produced from OSPM for each of the four selected continuous predictors 

LDC, ROE, RSIZE, and SIGMA.  Here jx  stands for the value of the j-th selected continuous 

predictor, and x  has the j-th component as  but all other components are fixed at their sample 

median levels.  In the plot of 

,jx

ˆ{ , ( )},jx H x  we have taken the left and the right boundary points of 

its horizontal axe as the 0.5 and 99.5 percentiles of the values of the j-th selected continuous 

predictor, respectively.  These plots are used to visually check the adequacy of the order-one 

polynomial function assumed for each continuous predictor in the linear regression function of 

OLPM.  From panels (a)-(d) of Figure 1, the slope of each curve agrees with the expected 

direction of the corresponding variable effect.  However, we also see that the order-one 

polynomial assumed for each continuous predictor by OLPM is inadequate, since it is clear that 

there is a nonlinear relationship between jx  and  for each of ROE, RSIZE, and SIGMA, 

except LDC. 

ˆ ( )H x
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3.4.  Prediction results 

 

Given the estimation and the holdout samples, the performance of the two discussed 

prediction rules based on OLPM and OSPM are presented in Figure 2 and Tables 6 and 7. 

Figure 2 shows the error rates of the two discussed prediction rules.  These error rates were 

derived under the constraint that the in-sample type I error rate was at most   Panels (a), (c), 

and (e) of Figure 2 show the in-sample error rates of the two prediction rules.  In the case of 

 their in-sample type I error rates are close to the designed bounds, but the in-sample 

type II and total error rates of OSPM are smaller than those of OLPM.  The largest percentage 

decrease of the in-sample total error rate by OSPM over OLPM is about 21%.  On the other hand, 

panels (b), (d), and (f) of Figure 2 show the out-of-sample error rates of the two prediction rules.  

Their out-of-sample type II error rates are very similar, for all 

.u

0.08,u ≤

].1,0[∈u   However, the out-of-

sample type I and total error rates of OSPM are in general smaller than those of OLPM, for all 

  The largest percentage decrease of the out-of-sample total error rate by OSPM over 

OLPM is 22%.  Considering the out-of-sample type I and total error rates, OSPM clearly 

outperforms OLPM, for all  

].1,0[∈u

].1,0[∈u

In the case of 1,u =  the results of classifying the estimation companies and predicting the 

holdout companies are given in Tables 6 and 7, respectively.  All error rates shown in these two 

tables were produced under no constraint on the magnitude of in-sample type I or type II error 

rate.  Table 6 shows that OSPM has smaller in-sample type I and total error rates, but larger in-

sample type II error rate.  Table 7 shows that OSPM has better prediction performance than 

OLPM, since the out-of-sample total error rates of their predictions are equal to 18.9% and 24.0%, 

respectively.  Also, OSPM has better ability in predicting the speculative grade {Below BBB}.  

This is important, since misclassifying speculative grade to investment grade ({BBB} or {AAA, 

AA, A}) might cause severe losses to investors.  

 

4.  Conclusion remarks and future research topics 

 

In this paper, multiple-class prediction methods based on OSPM is proposed.  Our OSPM 

is developed by replacing the linear regression function x zξ ρ ϕ+ +  of OLPM with a 

semiparametric regression function ( ) .H x zθ+   Here  is an unknown but smooth function 

of the value 

)(xH

x  of the d-dimensional continuous explanatory variable ,X  and z  is the value of  

 discrete explanatory variable 1×q .Z   Hence OSPM is more flexible than OLPM in modeling 

the regression function.  The estimators of unknown quantities in OSPM are developed from the 

local likelihood method, and computed by maximizing a weighted log-likelihood function.  Thus 
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the required computation for OSPM is as simple as that for OLPM.  The large sample properties 

of these estimators are studied through their asymptotic bias and variance.  Theoretical results 

show that the computed regression function value using OSPM consistently estimates the true 

regression function value.  Thus OSPM is a reliable prediction model. 

To decide the optimal prediction rule, we propose to control the magnitude of in-sample 

type I error rate to be at most  so that the sum of in-sample type I and II error rates is minimal.  

Based on the estimation sample, the type I error rate denotes the rate of misclassifying a company 

to a higher rating category, and type II error rate stands for the rate of misclassifying a company 

to a lower rating category.  Controlling the magnitude of type I error rate is important, since the 

type I error might cause severe losses to investors. 

,u

One additional advantage of using OSPM is that the relation between  and the d-

dimensional predictive variable 

)(xH

x  can be obtained from the plots of ˆ{ , ( )},jx H x  for 

  Here 1, , .j = " d jx  denotes the value of the j-th continuous predictor, and x  in  has the 

j-th component as  but all other components are fixed at some values, for example their 

sample medians.  Using these plots of 

ˆ ( )H x

,jx

ˆ{ , ( )},jx H x  the adequacy of the order-one polynomial 

function assumed for each continuous predictor in the linear regression function of OLPM can be 

visually checked.  If the linear regression function of OLPM is not proper, the plots of 

ˆ{ , ( )}jx H x  may guide us on how to make a better selection of parametric regression function for 

ordered probit model.  For example, if the plot of ˆ{ , ( )},jx H x  for some ,j  presents a quadratic 

relation, then the relation between the regression function and jx  should be an order-two 

polynomial.  Sometime, using a parametric regression function in ordered probit model is 

important, particularly when one has many predictors to be considered simultaneously and does 

not have enough sample data to estimate the regression function nonparametrically. 

One real data example for predicting S&P’s LTRs in year 2007 has been used to illustrate 

OSPM.  To find important predictors of S&P’s LTRs, we have considered twenty-four potential 

predictors used in previous studies.  The twenty-four potential predictors include four market-

driven variables, nineteen accounting variables, and industry effects.  A data set containing 779 

companies (413 estimation companies and 366 holdout companies) having complete values of the 

twenty-four potential predictors for studying S&P’s LTRs in April 2007 was collected from 

COMPUSTAT and CRSP databases.  The results obtained by the forward selection procedure 

show that the final list of the selected predictors for OLPM contains industry effects, two market-

driven variables, and two accounting variables.  Given the estimation and the holdout samples, 

our empirical results demonstrate that the prediction rule based on OSPM has better performance 
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than that based on OLPM, in the sense of having smaller out-of-sample total error rate. 

In order to estimate OSPM in practice, we need to decide proper values of bandwidth 

parameters  and    In this paper, we suggest using a grid search approach to find those proper 

values.  However, this approach suffers from heavy computational burden.  One possible remedy 

for this drawback is to use the plug-in method to estimate those proper values.  For example, we 

may determine those values by minimizing the estimated mean square error of each estimator 

 and 

b .g

ˆ ( )H x ˆ.θ   For more discussion of the plug-in approach, see for example Härdle et al. (1992) 

and Jones et al. (1996). 

There are some possible extensions for the methods considered in this paper.  First, in this 

paper, we only used cross-sectional data to study the performance of OSPM.  The model can also 

be applied to panel data with independence assumption (Blume et al., 1998; Poon, 2003; Güttler 

and Wahrenburg, 2007).  Secondly, to account for the autocorrelations among panel data, we may 

introduce a dynamic OLPM or OSPM with autocorrelation structure (Lipsitz et al., 1994; Müller 

and Czado, 2005) to study credit ratings.  Thirdly, the performance of OSPM for predicting credit 

ratings was only studied in this paper using firm-specific variables including market-driven 

variables, accounting variables, and industry effects.  The macroeconomic variables such as 

change in GDP and unemployment rate have been considered in Güttler and Wahrenburg (2007) 

as major determinants of credit ratings.  It is of interest to study the effects of macroeconomic 

variables on our OSPM for predicting credit ratings in the future research.  Finally, the industry 

effects on S&P’s LTRs were studied by introducing industry indicator variables in each of OLPM 

and OSPM.  They could also be studied using frailty factors to describe the unobservable 

heterogeneity (Duffie et al., 2006; Chava at al., 2008).  

 

Appendix A.  Theoretical Results 

 

In Appendix A, we shall present asymptotic properties of estimators ,θ̂  ,τ̂  and   Those 

of  are shown in (A10) of Appendix B.  The composition of the estimation sample and the 

formulation of these estimators have been given in Section 2.1 and in Sections 2.3-2.4, 

respectively. 

).(ˆ
0xH

0( )H x�

To study asymptotic properties of estimators ,θ̂  ,τ̂   and  we need the 

following conditions: 

0( ),H x� ),(ˆ
0xH

(C1) The function  is defined on  and each of its second order partial derivative is 

Lipschitz continuous on  

)(xH ,]1 ,0[ d

.]1 ,0[ d
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(C2) The frequency function  of  is Lipschitz continuous and bounded above 

zero on  with respect to 

) ,( zxf ) ,( ZX
d]1 ,0[ ,x  for each   Also, the conditional probability density function 

 of 

.z

) |( xzf Z  given  can not be zero or one for each xX = ,x  and is Lipschitz continuous with 

respect to .x  

(C3) The kernel function K  is a symmetric and Lipschitz continuous probability density function 

supported on  ].1 ,1[−

(C4) The values of b  and g  are selected on the interval 1 1[  ,  ],s ss n s n− + − −  where s  is an 

arbitrarily small positive constant.  The values of b  and g  satisfy   The 

notation  means that  as 

.  1 2 bgbn d >>>>>>+

nn ba   >> ,0  / →nn ab .∞→n  

Conditions (C1)-(C4) are regular for the usual nonparametric regression analysis.  The 

bounded region  in (C1) and (C2) is given for simplicity of presentation.  The first part of 

condition (C2) guarantees that in estimating  for each  the 

probability of  is not zero.  The second part of (C2) makes sure that 

Hessian matrices of log-likelihood functions  and 

d]1 ,0[

),( 0xH ,]1 ,0[),,( 0010
d

dxxx ∈= "

∏ =
+−∈

d

j jj bxbxX
1 00 ] ,[

) ;,,( 0
*
0 xτθηA *

2 ( ;  )0xηA  given in Sections 2.3-

2.4 are invertible. 

In order to give concise expressions for asymptotic properties of estimators  ,θ̂ ,τ̂  and 

 we need more notation.  Let  be the Hessian matrix of the d-

variate function 

),(ˆ
0xH ddji uHuH ×= )]([)( ,

)2(

H  at   ,),,( 1
T

duuu "= ,)()(
1

# ∏
=

=
d

j
juKuK },/)1( ,1max{ 0 bx kk −−=ϕ  and 

},/ ,1min{ 0 bx kk =ρ  for    Define .,,1 dk "=
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Set  as the collection of all values of the discrete q-dimensional explanatory variable  

 and 

Q ,Z

), ,() ,() ,( 1 zuzuzud jjj −−= φφ ), ,( / }) ,() ,({) ,( 11 zudezuezuzu jjjjjj −−−= φφψ  for 

  Here  is an .,,1 mj "= je 1)2( ×−m  vector with the (j-1)-th component as 1 and all other 

components as   and ,0 }, )({) ,( zuHzu jj θτφφ −−= φ  is the probability density function of 

the standard normal random variable.  Define 
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where  is  with ) ,( zuDj ) ,( zud j φ  replaced by .Φ   Similarly define ,0ξ   and  as ,1ξ 2ξ ,0κ  

,1κ  and 2κ  with  replaced by  define   and  as  

 and  with 

)(# uK ,)( 2# uK ),(0 uS ),(1 uS )(2 uS ),(0 uT

),(1 uT )(2 uT ), ,( zujψ  , ) ,( T
j zzuψ  and T

jj zuzu ) ,( ) ,( ψψ  replaced by   and 

 respectively  in each case, and define  for 

,1 ,z

, Tzz , )(   
1 

0 

1 

0 ∫∫=Σ duuS jj " .2 ,1 ,0=j  

Finally, define quantities related to asymptotic biases and variances of the estimators ˆ,θ  ˆ,τ  

and  :)(ˆ
0xH
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Specifically, if  is in the interior region  of the support of the marginal 

probability density function of the d-dimensional continuous explanatory variable  then 
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The following Theorem 1 states the asymptotic bias and variance for each of  ,θ̂ ,τ̂  and 

  Its proof will be given in Appendix B. ).(ˆ
0xH
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Theorem 1.  Assume the model (7), and let conditions (C1)-(C4) be satisfied.  The asymptotic 

biases and variances of  and θ̂ τ̂  can be expressed as 

)},1(1{  )ˆBias( 2 obb += θθ                                                      (A1) )},1(1{  )ˆVar( 1 oVn += −
θθ

)},1(1{  )ˆBias( 2 obb += ττ                                                       (A2) )}.1(1{  )ˆVar( 1 oVn += −
ττ

Also, those of  can be expressed as )(ˆ
0xH

)},1(1{ )( )}(ˆBias{ 0
2

0 oxbgxH H +=              (A3) )},1(1{ )( )}(ˆ{Var 0
1

0 oxVgnxH H
d += −−

for each  .]1 ,0[0
dx ∈

 

Remark 1.  By Theorem 2.1 of Ruppert and Wand (1994) and our (A3) in Theorem 1, the 

optimal K  satisfying the conditions in (C3) for constructing  for each  is the 

Epanechnikov kernel defined as  in the sense of having smaller 

asymptotic mean integrated square error.  On the other hand, by (A3), the optimal choice of the 

value of 

),(ˆ
0xH ,]1 ,0[0

dx ∈

),1|(| )1( )4/3()( 2 ≤−= tIttK

,g  in terms of having smaller asymptotic mean integrated square error of  is ),(ˆ
0xH
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= ∫ ∫ ∫ ∫" "   However, the optimal value 

 is not available in practice since it depends on the unknown factors  *g ),(xH ,θ  ,τ  and 

  Similarly, by (A1)-(A3) and (C4), the optimal value  of b  for constructing ).,( zxf *b ),(~
0xH  

in terms of having smaller asymptotic mean square error of  and θ̂ ,τ̂  satisfies the condition 

  Thus we conclude that the value of  is of larger order than that of 

 and that the asymptotic mean integrated square error of  using  is of smaller order 

in magnitude than that of 

.)2/(1)4/(1 +−+− >>>> dd nbn *g

,*b )(ˆ
0xH *g

)(~
0xH  using   The specific formulation of the asymptotic bias and 

variance of 

.*b

)(~
0xH  will be given in (A10) in Appendix B. 

 

Appendix B.  Sketches of the Proofs

 

In Appendix B, sketches of the proof for Theorem 1 will be given.  The following notation 

will be used throughout Appendix B.  Set ), , ,( τθηω =  ),~ ,~ ,~(~ τθηω =  ), ,( τθζ =  and 

  Let  and  be the gradient vector and the Hessian matrix of the log-

likelihood function  given in Sections 2.3-2.4, respectively, for each   Also, let 

).ˆ ,ˆ(ˆ τθζ = )1(  *
jA

)2(  *
jA

*
jA .2 ,1 ,0=j
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)2(H  be the Hessian matrix of   Let .H Xf  be the marginal probability density function of the d-

dimensional continuous explanatory variable   Define  as the event that the number of .X 0P ix  

falling into the region ∏ =
+−

d

j jj bxbx
1 00 ]2/ ,2/[  is less than 
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Proof of the asymptotic bias and variance of ).(~
0xH   By the first order Taylor theorem, we 

have 
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for each  where  lies in the line segment connecting ,]1 ,0[0
dx ∈ *ω ω  and .~ω  

Using (C1)-(C4), the large deviation theorem in Section 10.3.1 of Serfling (1980), and 

approximations to the standard errors of functions of random variables in Section 10.5 of Stuart 

and Ord (1987), a straightforward calculation leads to the following asymptotic results: as 
 ,∞→n
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and  is  with each element  replaced by  for  0C 0B jκ ,jξ .0≥j

Using the results of (A4)-(A8) and comparing the magnitudes of 

 and  in (A4), we have )() ;( 2/2/12
0
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0

d
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Using (A4)-(A9) and approximations to the standard errors of functions of random variables and 

Theorem A.3 of Anderson (2003), the asymptotic bias and variance of the estimator )(~
0xH  can 

be expressed as 

)},1(1{ )( )}(~Bias{ 0
2

0 oxbbxH H +=   )},1(1{ )( )}(~{Var 00
1

0 oxVbnxH d += −−            (A10) 

for each   Here the little-o terms in (A10) all tend to zero uniformly in  and 

 is the (1,1)-th component of the matrix   The proof of the asymptotic bias 

and variance of  is complete. 
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Proof of (A1) and (A2).  By the first order Taylor theorem, we have 
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where  lies in the line segment connecting *ζ ζ  and   Using (A10), (C1)-(C4), and 

approximations to the standard errors of functions of random variables, a straightforward 

calculation leads to the following asymptotic results: as 
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Following the same argument of (A4)-(A9) and using (A11)-(A14), we have 
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Combining this result with (A12)-(A14) and (C1)-(C4), and using approximations to the standard 

errors of functions of random variables and Theorem A.3 of Anderson (2003), the results of (A1) 

and (A2) follow. 

 

Proof of (A3).  Using (C1)-(C4), (A1)-(A2), and approximations to the standard errors of 

functions of random variables, a straightforward calculation leads to the following asymptotic 

results: as  ,∞→n
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for each ,η  where the little-o terms in (A16)-(A18) all tend to zero uniformly in  ,0x
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(A4)-(A9) and using (A16)-(A18), we have   Combining this result 

with (A16)-(A18), and using approximations to the standard errors of functions of random 

variables and Theorem A.3 of Anderson (2003), the result of (A3) follows. 
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Figure 1: Plots of marginal relations between the function  and the four selected continuous 

predictors LDC, ROE, RSIZE, and SIGMA.  Panels (a)-(d) show the plots of 

ˆ ( )H x

ˆ{ , ( )}jx H x  resulted 

from OSPM using   Here ˆ ˆ ˆ{ (1), (1), (1)}.OSPMb g p jx  in the plot of ˆ{ , ( )}jx H x  stands for the 

value of the j-th selected continuous predictor, and x  has the j-th component as  but all other 

components are fixed at their sample median levels.  From panels (a)-(d), the slope of each curve 

agrees with the expected direction of the corresponding variable effect.  But these plots show 

clearly that there is a nonlinear relationship between 

,jx

jx  and  for each of ROE, RSIZE, and 

SIGMA, except LDC. 

ˆ ( )H x
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Figure 2: The performance of the two prediction rules based on OLPM (dashed curve) and OSPM 

(solid curve) using the five selected variables LDC, ROE, RSIZE, SIGMA, and industry effects.  

Panels (a), (c), and (e) show respectively the in-sample type I, type II, and total error rates 

obtained from the 413 estimation companies by the two prediction rules.  Panels (b), (d), and (f) 

show respectively the out-of-sample type I, type II, and total error rates derived from the 366 

holdout companies by the two prediction rules. 
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Table 1.  The frequency distributions of the sampled companies collected from the COMPUSTAT 

and CRSP databases with complete values of the twenty-four potential predictors for studying 

S&P’s LTRs in April 2007.  Panels A, B, and C present the frequency distributions of the sampled 

companies according to different S&P’s LTR categories, and SIC codes. 

 Estimation companies Holdout companies 
Panel A: S&P’s LTR 
AAA 4 2 
AA 18 3 
A 88 32 
BBB 156 78 
BB 89 133 
B 57 108 
CCC 0 9 
CC 1 0 
C 0 0 
D 0 1 
Total firms 413 366 
   
Panel B: S&P’s LTR Category 
{Below BBB} 147 251 
{BBB} 156 78 
{AAA, AA, A} 110 37 
Total firms 413 366 
   
Panel C: SIC code   
1000~1999 37 50 
2000~2999 112 67 
3000~3999 93 85 
4000~4999 114 96 
5000~5999 20 18 
7000~7999 26 31 
8000~8999 11 19 
Total firms 413 366 
Note: The financial service companies with SIC code 6000-6999 were excluded from the study, 
since they are subject to regulations and adopt different accounting conventions.  There were only 
three companies having SIC code less than 1000 and two companies carrying SIC code greater 
than 9000.  These five companies were also excluded from study.  If those industries with few 
companies are included in the prediction model, then the resulting number of industry indicator 
variables is increased, thus the estimates of parameters in the corresponding model might become 
less precise. 
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Table 2.  The definitions of the twenty-four potential predictors for studying important predictors 

of S&P’s LTRs in April 2007.  Panels A, B, and C present the definitions of market-driven 

variables, accounting variables, and industry indicator variables, respectively. 

Variable Definition 
Panel A: Four market-driven variables 

EXRET Monthly return on the firm minus the value-weighted CRSP NYSE / AMEX / 
NASDAQ index return cumulated to obtain the yearly return. 

RSIZE Logarithm of each firm’s market equity value divided by the total NYSE / 
AMEX / NASDAQ market equity value. 

SIGMA Standard deviation of each company monthly stock returns 
KMV KMV-Merton default probability 

 
Panel B: Nineteen accounting variables 
Size  

)TA(log10  Logarithm of Total assets 
Financial leverage 

EM Total assets / Equity 
LDC Long-term debt to capital 
TDC Total debt to capital 
SDC Short-term debt to capital 
TDEBITDA Total debt / (EBIT+DA),  DA: depreciation plus amortization 

Coverage  
EBITINT EBIT / Interest expenses 
EBITDAINT (EBIT+DA) / Interest expenses 

Cash flow  
FFO Net income from continuing operations, plus DA, deferred income taxes,  and 

other non-cash expense 
INT Interest expenses 
CASHEQ Total cash and equivalent 

Profitability  
OM (%) Operating margin after depreciation 
ROC (%) Return on capital  
ROE (%) Return on equity  
ROA (%) Return on assets  
RETA Retain earnings / Total assets 

Liquidity  
CR Current ratio 
QR Quick asset ratio 
CASHR Cash ratio 
 

Panel C: Six industry indicator variables for studying industry effects 
SIC1 1  if SIC code is within 1000~1999, and  0  otherwise 
SIC2 1  if SIC code is within 2000~2999, and  0  otherwise 
SIC3 1  if SIC code is within 3000~3999, and  0  otherwise 
SIC4 1  if SIC code is within 5000~5999, and  0  otherwise 
SIC5 1  if SIC code is within 7000~7999, and  0  otherwise 
SIC6 1  if SIC code is within 8000~8999, and  0  otherwise 

Note: The SIC code 4000~4999 was used as the reference level in studying the industry effects. 
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Table 3.  Summary statistics and F-tests of the estimation sample.  The p-values refer to the F-

tests of equality of the means among the three S&P’s LTR categories based on the estimation 

sample.  Panels A, B, and C present the results for the three S&P’s LTR categories {Below BBB}, 

{BBB}, and {AAA, AA, A}, respectively. 

Variable Mean Median 
Standard 
deviation Minimum Maximum p-value 

Panel A: {Below BBB} 
EXRET 0.115 0.070 0.292 -0.422 1.054 0.007** 

RSIZE -4.076 -4.036 0.564 -6.548 -2.898 0.000** 

SIGMA 0.099 0.093 0.038 0.044 0.251 0.000** 

KMV 0.029 0.000 0.105 0.000 0.966 0.007** 
)TA(log10  3.425 3.420 0.480 2.350 4.478 0.000** 

EM 4.749 3.058 13.916 -60.917 139.570 0.096 

LDC 0.486 0.468 0.208 0.002 1.013 0.000** 

TDC 0.530 0.513 0.205 0.028 1.023 0.000** 

SDC 0.044 0.021 0.075 0.000 0.462 0.012* 

TDEBITDA 3.633 3.310 9.613 -80.917 69.617 0.026* 

EBITINT 5.775 2.637 15.846 -25.763 164.612 0.000** 

EBITDAINT 9.724 4.063 33.768 -18.618 394.721 0.000** 

FFO 352.271 181.167 496.760 -280.233 3065.000 0.000** 

INT 149.658 63.678 244.430 1.770 1915.667 0.000** 

CASHEQ 351.692 145.858 566.090 0.179 3641.667 0.000** 

OM 11.453 8.450 14.927 -83.099 49.102 0.000** 

ROC 3.313 3.464 9.609 -61.724 34.882 0.000** 

ROE 3.804 6.582 40.686 -211.23 242.545 0.000** 

ROA 2.303 2.491 5.331 -24.334 19.009 0.000** 

RETA 0.016 0.070 0.373 -2.016 0.763 0.000** 

CR 1.741 1.524 1.098 0.472 11.247 0.026* 

QR 1.165 0.980 0.953 0.271 9.855 0.090 

CASHR 0.559 0.344 0.901 0.005 9.154 0.055 

 

Panel B: {BBB} 
EXRET 0.067 0.050 0.148 -0.336 0.630  
RSIZE -3.598 -3.609 0.519 -5.410 -2.325  
SIGMA 0.061 0.059 0.019 0.026 0.114  
KMV 0.003 0.000 0.019 0.000 0.219  

(continued on next page)
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Table 3.  (continued) 

Variable Mean Median 
Standard 
deviation Minimum Maximum p-value 

)TA(log10  3.822 3.785 0.456 2.947 5.100  
EM 3.030 2.643 1.794 1.433 17.591  
LDC 0.350 0.345 0.139 0.002 0.822  
TDC 0.406 0.395 0.150 0.035 0.873  
SDC 0.056 0.045 0.048 0.000 0.225  
TDEBITDA 2.382 1.986 1.698 0.097 17.142  
EBITINT 9.607 5.781 17.731 0.713 171.302  
EBITDAINT 13.342 8.500 24.626 1.602 248.009  
FFO 1046.719 522.681 1619.155 17.967 16427.302  
INT 209.605 96.369 335.349 1.345 2974.245  
CASHEQ 651.585 285.864 1151.857 4.074 10287.194  
OM 14.846 12.764 8.828 1.279 52.942  
ROC 8.299 7.638 5.847 -17.410 38.158  
ROE 14.591 13.219 11.126 -22.747 97.052  
ROA 5.217 4.762 3.357 -12.769 14.676  
RETA 0.212 0.219 0.189 -0.747 0.758  
CR 1.492 1.395 0.715 0.279 4.839  
QR 0.982 0.853 0.560 0.159 4.035  
CASHR 0.376 0.220 0.456 0.009 3.487  
 
Panel C: {AAA, AA, A} 
EXRET 0.032 0.012 0.135 -0.241 0.516  

RSIZE -3.104 -3.061 0.611 -4.907 -1.678  

SIGMA 0.053 0.052 0.017 0.025 0.106  

KMV 0.010 0.000 0.070 0.000 0.553  
)TA(log10  4.131 4.121 0.563 2.522 5.317  

EM 2.701 2.314 1.303 1.245 9.300  

LDC 0.271 0.245 0.153 0.001 0.707  

TDC 0.339 0.333 0.174 0.004 0.771  

SDC 0.067 0.058 0.057 0.000 0.286  

TDEBITDA 1.686 1.391 1.415 0.016 9.807  

EBITINT 25.914 11.401 51.392 0.038 369.383  

EBITDAINT 34.493 15.647 71.685 2.208 547.558  

(continued on next page)
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Table 3.  (continued) 

Variable Mean Median 
Standard 
deviation Minimum Maximum p-value 

FFO 4140.589 1626.167 6718.647 14.988 45991.667  

INT 342.962 118.834 576.459 2.992 4176.468  

CASHEQ 2697.290 713.283 4642.380 4.282 29752.667  

OM 17.992 17.102 8.935 -0.051 52.755  

ROC 13.249 12.470 7.108 -0.328 34.792  
ROE 21.083 18.777 13.304 -1.688 96.553  

ROA 8.578 7.940 4.516 -0.211 19.644  
RETA 0.394 0.373 0.252 -0.126 0.989  

CR 1.509 1.337 0.712 0.518 4.329  
QR 1.047 0.933 0.585 0.262 3.488  
CASHR 0.453 0.261 0.503 0.012 2.455  

Note: The notation ** and * indicates the significance of the F-test at the 1% and 5% levels, 
respectively. 
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Table 4.  The variable selection result.  The variables were selected in sequence for OLPM by the 

forward selection procedure based on minimizing in-sample total error rate.  The in-sample total 

error rate was computed using the classification scheme based on OLPM with cutoff value 1/   

The newly entered variable must be able to reduce at least one percent of in-sample total error 

rate of the classification scheme using those already entered variables. 

2.

Selection sequence Variable (1/ 2)inγ  

1 RSIZE 0.436* 
2 SIGMA 0.351* 
3 LDC 0.283* 
4 Industry effects 0.242* 
5 ROE 0.237* 
6 )TA(log10  0.235 
7 CR 0.232 
8 CASHR 0.228 
9 TDEBITDA 0.228 

10 QR 0.228 
11 EBITDAINT 0.225 
12 EXRET 0.225 
13 TDC 0.223 
14 FFO 0.215 
15 SDC 0.215 
16 KMV 0.223 
17 EM 0.223 
18 OM 0.228 
19 RETA 0.232 
20 INT 0.223 
21 EBITINT 0.220 
22 ROA 0.230 
23 ROC 0.232 
24 CASHEQ 0.237 

Note: The notation * indicates that the variable was selected by the forward selection procedure. 
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Table 5.  Maximum likelihood estimates of the parameters in Models 1 and 2.  Model 1 denotes 

OLPM with sample selection.  Model 2 stands for OLPM.  The variables used in each model 

were selected by the forward selection procedure shown in Table 4.  The p-values refer to the 

Wald chi-squared tests for testing the significance of parameters.  Panel A shows the results of 

OLPM under Models 1 and 2.  Panel B gives the results of the two-class linear probit model 

under Model 1.  Panel C presents the results for model fit test. 

Model 1  Model 2 Variable 
Coefficient p-value  Coefficient p-value 

Panel A: Ordered linear probit specification  
Threshold 

2δ 1.918 0.000**  1.923 0.000** 
Intercept ξ  7.678 0.000**  7.639 0.000** 
SIC1 0.199 0.667  0.207 0.443 
SIC2 0.275 0.466  0.266 0.167 
SIC3 -0.064 0.777  -0.066 0.748 
SIC4 -0.683 0.173  -0.691 0.042* 
SIC5 -0.885 0.016*  -0.883 0.010** 
SIC6 -1.208 0.061  -1.197 0.008** 
RSIZE 0.859 0.370  0.834 0.000** 
SIGMA -37.954 0.000**  -37.750 0.000** 
LDC -4.120 0.000**  -4.128 0.000** 
ROE 0.015 0.048*  0.015 0.000** 
  
Panel B: Two-class linear probit sample selection specification 
Intercept 2.509 0.000**    
SIC1 -0.134 0.462    
SIC2 0.178 0.188    
SIC3 0.023 0.876    
SIC4 0.101 0.664    
SIC5 -0.072 0.728    
SIC6 -0.270 0.342    
RSIZE 0.505 0.000**    
SIGMA -5.636 0.000**    
LDC -0.069 0.734    
ROE -0.001 0.174    
      
Panel C: Model fit test 
Chi-squared 
statistic 0.012 0.914  399.014 0.000** 
d.f. 1   10  
corr 0.095 0.981    
Note: The notation ** and * indicates the significance of the test at the 1% and 5% levels, 
respectively.  The notation d.f. and corr stands for the degree of freedom and the correlation 
coefficient between the error term in OLPM and that in the two-class linear probit model, 
respectively. 
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Table 6.  Classification results obtained from the 413 estimation companies.  Panels A and B 

show the results obtained by the two prediction rules based on OLPM and OSPM in the case of 

 respectively. 1,u =

Classified category 
True category 

{Below BBB} {BBB} {AAA, AA, A} 
Panel A: OLPM with  1u =
{Below BBB} 123 23 1 
{BBB} 16 122 18 
{AAA, AA, A} 4 35 71 

inα = (23+1+18)/413 = 0.102,  inβ = (16+4+35)/413 = 0.133,  inγ = 0.102+0.133 = 0.235 

 
Panel B: OSPM with  1u =
{Below BBB} 126 21 0 
{BBB} 17 129 10 
{AAA, AA, A} 4 43 63 

inα = (21+0+10)/413 = 0.075,  inβ = (17+4+43)/413 = 0.155,  inγ = 0.075+0.155 = 0.230 
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Table 7.  Prediction results obtained from the 366 holdout companies.  Panels A and B show the 

results obtained by the two prediction rules based on OLPM and OSPM in the case of 1,u =  

respectively. 

Predicted category 
True category 

{Below BBB} {BBB} {AAA, AA, A} 
Panel A: OLPM with  1u =
{Below BBB} 207 35 9 
{BBB} 16 54 8 
{AAA, AA, A} 2 18 17 

outα = (35+9+8)/366 = 0.142,  outβ = (16+2+18)/366 = 0.098,  outγ = 0.142+0.098 = 0.240 

 
Panel B: OSPM with  1u =
{Below BBB} 223 26 2 
{BBB} 15 60 3 
{AAA, AA, A} 4 19 14 

outα = (26+2+3)/366 = 0.085,  outβ = (15+4+19)/366 = 0.104,  outγ = 0.085+0.104 = 0.189 
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