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Abstract 

There has been a rapid growth of range volatility due to the demand of empirical 

finance. This paper contains a review of the important development of range volatility, 

including various range estimators and range-based volatility models. In addition, 

other alternative models developed recently, such as range-based multivariate 

volatility models and realized ranges, are also considered here. At last, this paper 

provides some relevant financial applications for range volatility. 
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I. Introduction 

With the continual development of new financial instruments, there is a growing 

demand for theoretical and empirical knowledge of the financial volatility. It is 

well-known that financial volatility has played such a central role in derivative pricing, 

asset allocation, and risk management. Following Barndorff-Nielsen and Shephard 

(2003) or Andersen et al. (2003), financial volatility is a latent factor and hence is not 

directly observable, however. Financial volatility can only be estimated using its 

signature on certain known market price process; when the underlying process is more 

sophisticated or when observed market prices suffer from market microstructure noise 

effects, the results are less clear. 

 

It is well known that many financial time series exhibit volatility clustering or 

autocorrelation. In incorporating the characteristics into the dynamic process, the 

generalized autoregressive conditional heteroskedasticity (GARCH) family of models 

proposed by Engle (1982) and Bollerslev (1986), and the stochastic volatility (SV) 

models advocated by Taylor (1986) are two popular and useful alternatives for 

estimating and modeling time-varying conditional financial volatility. However, as 

pointed by Alizadeh, Brandt, and Diebold (2002), Brandt and Diebold (2006), Chou 

(2005) and other authors, both GARCH and SV models are inaccurate and inefficient, 

because they are based on the closing prices, of the reference period, failing to used 

the information contents inside the reference. In other words, the path of the price 

inside the reference period is totally ignored when volatility is estimated by these 

models. Especially in turbulent days with drops and recoveries of the markets, the 

traditional close-to-close volatility indicates a low level while the daily price range 

shows correctly that the volatility is high.   
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The price range, defined as the difference between the highest and lowest market 

prices over a fixed sampling interval, has been known for a long time and recently 

experienced renewed interest as an estimator of the latent volatility. The information 

contained in the opening, highest, lowest, and closing prices of an asset is widely used 

in Japanese candlestick charting techniques and other technical indicators (Nisson, 

1991). Early application of range in the field of finance can be traced to Mandelbrot 

(1971), and the academic work on the range-based volatility estimator started from 

the early 1980s. Several authors, back to Parkinson (1980), developed from it several 

volatility measures far more efficient than the classical return-based volatility 

estimators. 

 

Building on the earlier results of Parkinson (1980), many studies
1
 show that one 

can use the price range information to improve volatility estimation. In addition to 

being significantly more efficient than the squared daily return, Alizadeh, Brandt, and 

Diebold (2002) also demonstrate that the conditional distribution of the log range is 

approximately Gaussian, thus greatly facilitating maximum likelihood estimation of 

stochastic volatility models. Moreover, as pointed by Alizadeh, Brandt, and Diebold 

(2002), and Brandt and Diebold (2006), the range-based volatility estimator appears 

robust to microstructure noise such as bid-ask bounce. By adding microstructure noise 

to the Monte Carlo simulation, Shu and Zhang (2006) also support that the finding of 

Alizadeh, Brandt, and Diebold (2002), that range estimators are fairly robust toward 

microstructure effects.  

                                                 
1
 See Garman and Klass (1980), Beckers(1983), Ball and Torous (1984), Wiggins (1991), Rogers and 

Satchell (1991), Kunitomo (1992), Yang and Zhang (2000), Alizadeh, Brandt and Diebold (2002), 

Brandt and Diebold (2006), Brandt and Jones (2006), Chou (2005, 2006), Cheung (2007), Martens and 

van Dijk (2007), Chou and Wang (2007), Chou, Liu and Wu (2007), and Chou and Liu (2008a,b). 



4 

 

Cox and Rubinstein (1985) stated the puzzle that despite the elegant theory and 

the support of simulation results, the range-based volatility estimator has performed 

poorly in empirical studies. Chou (2005) argued that the failure of all the range-based 

models in the literature is caused by their ignorance of the temporal movements of 

price range. Using a proper dynamic structure for the conditional expectation of range, 

the conditional autoregressive range (CARR) model, proposed by Chou (2005), 

successfully resolves this puzzle and retains its superiority in empirical forecasting 

abilities. The in-sample and out-of-sample volatility forecasting using S&P 500 index 

data shows that the CARR model does provide more accurate volatility estimator 

compared with the GARCH model. Similarly, Brandt and Jones (2006) formulate a 

model that is analogous to Nelson’s (1991) EGARCH model, but uses the square root 

of the intra-day price range in place of the absolute return. Both studies find that the 

range-based volatility estimators offer a significant improvement over their 

return-based counterparts. Moreover, Chou, Liu, and Wu (2007) extend CARR to a 

multivariate context using the dynamic conditional correlation (DCC) model proposed 

by Engle (2002a). They find that this range-based DCC model performs better than 

other return-based volatility models in forecasting covariances. This paper will also 

review alternative range-based multivariate volatility models. 

 

    Recently, many studies use high frequency data to get an unbiased and highly 

efficient estimator for measuring volatility, see Andersen et al. (2003) and McAleer 

and Medeiors (2008) for a review. The volatility built by non-parametric methods is 

called realized volatility, which is calculated by the sum of non-overlapping squared 

returns within a fixed time interval. Martens and van Dijk (2007) replace the squared 
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return by the price range to get a more efficient estimator, namely the realized range. 

In their empirical study, the realized range significantly improves over realized return 

volatility. In addition, Christensen and Podolskij (2007) independently develop the 

realized range and show that this estimator is consistent and relative efficient under 

some specific assumptions. 

 

The reminders are laid out as follows. Section II introduces the price range 

estimators. Section III describes the range-based volatility models, including 

univariate and multivariate ones. Section IV presents the realized range. The financial 

applications of range volatility are provided in Section V. Finally, the conclusion is 

showed in Section VI. 

 

II. The Price Range Estimators 

A few price range estimators and their estimation efficiency are briefly introduced and 

discussed in this section. A significant practical advantage of the price range is that for 

many assets, daily opening, highest, lowest, and closing prices are readily available. 

Most data suppliers provide daily highest/lowest as summaries of intra-day activity. 

For example, Datastream records the intraday price range for most securities, 

including equities, currencies and commodities, going back to 1955. Thus, 

range-based volatility proxies are therefore easily calculated. When using this record, 

the additional information yields a great improvement when used in financial 

applications. Roughly speaking, knowing these records allows us to get closer to the 

real underlying process, even if we do not know the whole path of asset prices. For an 

asset, let’s define the following variables: 

=tO the opening price of the t
th

 trading day, 
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=tC the closing price of the t
th

 trading day, 

=tH the highest price of the t
th

 trading day, 

=tL the lowest price of the t
th

 trading day. 

 

The Parkinson (1980) estimator efficiency intuitively comes from the fact that 

the price range of intraday gives more information regarding the future volatility than 

two arbitrary points in this series (the closing prices). Assuming that the asset price 

follows a simple diffusion model without a drift term, his estimator 2ˆ
P

σ  can be 

written:  

2 21
ˆ (ln ln )

4 ln 2
P t t

H Lσ = − .                                             (1) 

 

But instead of using two data points, the highest and lowest prices, four data 

points, the opening, closing, highest and lowest prices, might also give extra 

information. Garman and Klass (1980) propose several volatility estimators based on 

the knowledge of the opening, closing, highest and lowest prices. Like Parkinson 

(1980), they assume the same diffusion process and propose their estimator 2ˆ
GS

σ  as: 

2 2

2

ˆ 0.511[ln( / )] 0.19{ln( / )[ln( ) ln( ) 2 ln( )]

          2[ln( / ) ln( / )]} 0.383[ln( / )]

GK t t t t t t t

t t t t t t

H L C O H L O

H O L O C O

σ = − + −

− −
.           (2) 

 

    As mentioned in Garman and Klass (1980), their estimator can be presented 

practically as 2 2 2ˆ 0.5[ln( / )] [2 ln 2 1][ln( / )]
GK t t t t

H L C Oσ ′ = − − . 

 

Since the price path cannot be monitored when markets are closed, however, 

Wiggins (1991) finds that the both Parkinson estimator and Garman-Klass estimator 
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are still biased downward compared to the traditional estimator, because the observed 

highs and lows are smaller than the actual highs and lows. Garman and Klass (1980) 

and Grammatikos and Saunders (1986), nevertheless, estimate the potential bias using 

simulation analysis and show that the bias decreases with an increasing number of 

transaction. Therefore, it is relatively easy to adjust the estimates of daily variances to 

eliminate the source of bias. 

 

Because Parkinson (1980) and Garman and Klass (1980) estimators implicitly 

assume that log-price follows a geometric Brownian motion with no drift term, further 

refinements are given by Rogers and Satchell (1991) and Kunitomo (1992). Rogers 

and Satchell (1991) add a drift term in the stochastic process that can be incorporated 

into a volatility estimator using only daily opening, highest, lowest, and closing prices. 

Their estimator 2ˆ
RS

σ  can be written: 

( ) ( ) ( )

( ) ( ) ( )

2 1
ˆ ln ln ln

        ln ln ln

t

RS n n n n n n

n t N

n n n n n n

H O H O C O
N

L O L O C O

σ
= −

= −  

+ −  

∑
.                       (3) 

 

Rogers, Satchell, and Yoon (1994) report that the Rogers-Satchell estimator 

yields theoretical efficiency gains compared to the Garman-Klass estimator. They also 

report that the Rogers-Satchell estimator appears to perform well with changing drift 

and as few as 30 daily observations. 

 

Kunitomo (1992) uses the opening and closing prices to estimate a modified 

range corresponding to a hypothesis of a Brownian bridge of the transformed 

log-price. This basically also tries to correct the highest and lowest prices for the drift 

term: 
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( )2 1 ˆ ˆˆ ln
t

K n n

p t NN

H Lσ
β = −

 =
 ∑ ,                                           (4) 

where two estimators ( )[ ] ( ) [ ]{ }





−∈−+−+−= nntOCtOCOPMaxArgH inninnnt

Pt
n i

iti

,1ˆ  

and ( )[ ] ( ) [ ]{ }





−∈−+−+−= nntOCtOCOPMinArgL inninnnt

Pt
n i

iti

,1ˆ  are denoted as 

the end-of-the-day drift correction highest and lowest prices. ( )2/6 πβ NN =  is a 

correction parameter. 

 

Finally, Yang and Zhang (2000) make further refinements by deriving a price 

range estimator that is unbiased, independent of any drift, and consistent in the 

presence of opening price jumps. Their estimator 2ˆ
YZ

σ  thus can be written 

t
2

n n-1 n n-1

n t-N

t
2

n n-1 n n-1

n t-N

1
ˆ ln(O /C )-ln(O /C )

(N-1)

k
ˆ         ln(O /C )-ln(O /C ) (1-k) 

(N-1)

YZ

RS

σ

σ

=

=

 =  

 + + 

∑

∑
,                      (5) 

where 
)1()1(34.1

34.0

−++
=

NN
k . The symbol X  is the unconditional mean of X , 

and 2

RS
σ  is the Rogers-Satchell estimator. The Yang-Zhang estimator is simply the 

sum of the estimated overnight variance, the estimated opening market variance, and 

the Rogers and Satchell (1991) drift independent estimator. The resulting estimator 

therefore explicitly incorporates a term for the closed market variance. 

 

Shu and Zhang (2006) investigates the relative performance of the four 

range-based volatility estimators including Parkinson, Garman-Klass, Rogers-Satchell, 

and Yang-Zhang estimators for S&P 500 index data, and finds that the price range 

estimators all perform very well when an asset price follows a continuous geometric 
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Brownian motion. However, significant differences among various range estimators 

are detected if the asset return distribution involves an opening jump or a large drift.  

 

In term of efficiency, all previous estimators exhibit very substantial 

improvements. Defining the efficiency measure of a volatility estimator 2ˆ
iσ  as the 

estimation variance compared with the close-close estimator 2σ̂ , that is:  

2
2

2

ˆ( )
ˆ( )

ˆ( )
i

i

Var
Eff

Var

σ
σ

σ
= .                                                  (6) 

 

Parkinson (1980) reports a theoretical relative efficiency gain ranging from 2.5 to 

5, which means that the estimation variance is 2.5 to 5 times lower. Garman and Klass 

(1980) report that their estimator has an efficiency of 7.4; while the Yang and Zhang 

(2000) and Kunitomo (1992) variance estimators result in a theoretical efficiency gain 

of, respectively, 7.3 and 10.  

 

III. The Range-based Volatility Models  

This section provides a brief overview of the models used to forecast range-based 

volatility. In what follows, the models are presented in increasing order of complexity. 

For an asset, the range of the log-prices is defined as the difference between the daily 

highest and lowest prices in a logarithm type. It can be denoted by: 

)ln()ln( ttt LHR −= .                                                  (7) 

 

According to Christoffersen (2002), for the S&P500 data the autocorrelations of 

the range-based volatility, tR , show more persistence than the squared-return 

autocorrelations. Thus, range-based volatility estimator of course could be used 
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instead of the squared return for evaluating the forecasts from volatility models, and 

with the time series of tR , one can easily constructs a volatility model under the 

traditional autoregressive framework.  

 

Instead of using the data of range, nevertheless, Alizadeh, Brandt, and Diebold 

(2002) focus on the variable of the log range, ln( )
t

R , since they find that in many 

applied situations, the log range approximately follows a normal distribution. 

Therefore, all the models introduced in the section except for Chou’s CARR model 

are estimated and forecasted using the log range. 

 

The following range-based volatility models are first introduced in some simpe 

specifications, including random walk, moving average (MA), exponentially 

weighting moving average (EWMA), and autoregressive (AR) models. Hanke and 

Wichern (2005) think these models are fairly basic techniques in the applied 

forecasting literature. Additionally, we also provide some models at a much higher 

degree of complexity, such as the stochastic volatility (SV), CARR and range-based 

multivariate volatility models.  

 

The Random Walk Model 

The log range ln( )
t

R  can be viewed as a random walk. It means that the best 

forecast of the next period’s log range is this period’s estimate of log range. As in 

most papers, the random walk model is used as the benchmark for the purpose of 

comparison. 

1[ln( ) | ] ln( )
t t t

E R I R+ = ,                                                (8) 

where 
t

I  is the information set at time t. The estimator 1[ln( ) | ]
t t

E R I+  is obtained 



11 

conditional on 
t

I . 

 

The MA Model 

MA methods are widely used in time series forecasting. In most cases, a moving 

average of length N where N= 20, 60, 120 days is used to generate log range forecasts. 

Choosing these lengths is fairly standard because these values of N correspond to one 

month, three months and six months of trading days respectively. The expression for 

the N day moving average is shown below: 

1

1

0

1
[ln( ) | ] ln(R )

N

t t t j

j

E R I
N

−

+ −
=

= ∑ .                                         (9) 

 

The EWMA Model 

EWMA models are also very widely used in applied forecasting. In EWMA models, 

the current forecast of log range is calculated as the weighted average of the one 

period past value of log range and the one period past forecast of log range. This 

specification is appropriate provided the underlying log range series has no trend. 

1 1[ln(R ) | ] [ln(R ) | ] (1 ) ln(R )t t t t tE I E Iλ λ+ −= + − .                          (10) 

 

The smoothing parameter, λ, lies between zero and unity. If λ is zero then the 

EWMA model is the same as a random walk. If λ is one then the EWMA model 

places all of the weight on the past forecast. In the estimation process the optimal 

value of λ was chosen based on the root mean squared error criteria. The optimal λ is 

the one that records the lowest MSE.  

 

The AR Model 
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This model uses an autoregressive process to model log range. There are n lagged 

values of past log range to be used as drivers to make a one period ahead forecast. 

1 0 1

1

[ln(R )] ln(R )
n

t i t i

i

E β β+ + −
=

= + ∑ .                                      (11) 

 

The Discrete-time Range-based SV Model 

Alizadeh, Brandt, and Diebold (2002) present a formal derivation of the discrete time 

SV model from the continuous time SV model. The conditional distribution of log 

range is approximately Gaussian: 

2

1 1ln ln ~ [ln (ln ln ), ]t t tR R N R R R tρ β+ −+ − ∆ ,                            (12) 

where NTt =∆ , T is the sample period and N is the number of intervals. The 

parameter β models the volatility of the latent volatility. Following Harvey, Ruiz, and 

Shephard (1994), a linear state space system including the state equation and the 

signal equation can be written: 

( )( 1) ( 1)ln ln ln ln
i t t i t i t

R R R R tρ β υ+ ∆ ∆ ∆ + ∆= + − + ∆ .                         (13) 

*

,( 1) ,( 1) ( 1)ln ( ) ln ln ( )i t i t i t i t i t i tf s R E f sγ ε∆ + ∆ ∆ ∆ + ∆ + ∆
 = + +  .                     (14) 

 

Equation (13) is the state equation and Equation (14) is the signal equation. In 

Equation (14), E is the mathematical expectation operator. The state equation errors 

are i.i.d. N(0,1) and the signal equation errors have zero mean.  

 

A two-factor model can be represented by the following state equation.  

( 1) 1,( 1) 2,( 1)ln ln ln lni t i t i tR R R R+ ∆ + ∆ + ∆= + + .                                     

1,( 1) 1, 1, 1 1,( 1)ln lni t t i t i tR R tρ β υ+ ∆ ∆ ∆ + ∆= + ∆ .                                 (15) 
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2,( 1) 2, 2, 2 2,( 1)ln lni t t i t i tR R tρ β υ+ ∆ ∆ ∆ + ∆= + ∆ .                                    

 

The error terms 1υ  and 2υ  are contemporaneously and serially independent 

N(0,1) random variables. They estimate and compare both one-factor and two-factor 

latent volatility models for currency futures prices and find that the two-factor model 

shows more desirable regression diagnostics. 

 

The Range-based EGARCH model 

Brandt and Jones (2006) incorporate the range information into the EGARCH model, 

named by the range-based EGARCH model. The model significantly improves both 

in-sample and out-of-sample volatility forecasts. The daily log range and log returns 

are defined as the followings: 

2

1ln( ) | ~ (0.43 ln ,0.29 )t t tR I N h− + , 2

1| ~ (0, )t t tr I N h− ,                      (16) 

where th  is the conditional volatility of the daily log return tr . Then, the 

range-based EGARCH for the daily volatility can be expressed by: 

1 1 1 1 1ln ln ( ln ) /R

t t t t t th h h X r hκ θ φ δ− − − − −− = − + + ,                            (17) 

where θ  is denoted as the long-run mean of the volatility process, and κ  is 

denoted as the speed of mean reverting. The coefficient δ  decides the asymmetric 

effect of lagged returns. The innovation,  

1 1
1

ln( ) 0.43 ln

0.29

R t t
t

R h
X − −

−

− −
= ,                                         (18) 

is defined as the standardized deviation of the log range from its expected value. It 

means φ  is used to measure the sensitivity to the lagged log ranges. In short, the 

range-based EGARCH model is just replaced the innovation term of the modified 

EGARCH by the standardized log range. 
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The CARR Model 

This section provides a brief overview of the CARR model used to forecast 

range-based volatility. The CARR model is also a special case of the multiplicative 

error model (MEM) of Engle (2002b). Instead of modeling the log range, Chou (2005) 

focuses the process of the price range directly. With the time series data of price range 

tR , Chou (2005) presents the CARR model of order (p,q), or CARR (p,q) is shown as 

1 1

,  ~ (.),
t t t t

p q

t i t i j t j

i j

R f

R

λ ε ε

λ ω α β λ− −
= =

=

= + +∑ ∑
,                                      (19) 

where tλ  is the conditional mean of the range based on all information up to time t, 

and the distribution of the disturbance term tε , or the normalized range, is assumed 

to have a density function (.)f  with a unit mean. Since tε  is positively valued 

given that both the price range tR  and its expected value tλ  are positively valued, a 

natural choice for the distribution is the exponential distribution. 

 

The equation of the conditional expectation of range can be easily extended to 

incorporate other explanatory variables, such as trading volume, time-to-maturity, 

lagged return. 

k

L

k

k

q

j

jtjit

p

i

it XlR ∑∑∑
==

−−
=

+++=
111

λβαωλ .                                  (20) 

 

This model is called the CARR model with exogenous variables, or CARRX 

model. The CARR mode essentially belongs to a symmetric model. In order to 

describe the leverage effect of financial time series, Chou (2006) divides the whole 
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price range into two single-side price ranges, upward range and downward range. 

Further, he defines tUPR , the upward range, and tDNR , the downward range as the 

differences between the daily highs, daily lows and the opening price respectively, at 

time t. In other words, 

)ln()ln( ttt OHUPR −= ,                                              (21) 

)ln()ln( ttt LODNR −= .                                              (22) 

 

Similarity, with the time series of single-side price range, tUPR  or tDNR , 

Chou (2006) extends the CARR model to Asymmetric CARR (ACARR) model. In 

volatility forecasting, the asymmetric model also performs better than the symmetric 

model. 

 

The Range-based DCC model 

The multivariate volatility models have been extensively researched in recent studies. 

They provide relevant financial applications in various areas, such as asset allocation, 

hedging and risk management. Laurent and Rombouts (2006) offer a review of the 

multivariate volatility models. As to the extension of the univariate range models, 

Fernandes, Mota and Rocha (2005) propose one kind of multivariate CARR model 

using the formula Cov(X,Y)=[V(X+Y)-V(X)-V(Y)] /2 . Analogous to the Fernandes, 

Mota and Rocha’s (2005) work, Brandt and Diebold (2006) use no-arbitrage 

conditions to build the covariances in terms of variances. However, this kind of 

method can substantially apply to a bivariate case. 

 

Chou, Liu, and Wu (2007) combine the CARR model with the DCC model of 

Engle (2002a) to propose a range-based volatility model, which uses the ranges to 
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replace the GARCH volatilities in the first step of DCC. They conclude that the 

range-based DCC model performs better than other return-based models (MA100, 

EWMA, CCC, return-based DCC, and diagonal BEKK) through the statistical 

measures, RMSE and MAE based on four benchmarks of implied and realized 

covariance. 

 

The DCC model is a two-step forecasting model which estimates univariate 

GARCH models for each asset and then calculates its time-varying correlation by 

using the transformed standardized residuals from the first step. The related 

discussions about the DCC model can be found in Engle and Sheppard ,2001, Engle 

(2002a), and Cappiello, Engle and Sheppard (2006). It can be viewed as a 

generalization of the constant conditional correlation (CCC) model proposed by 

Bollerslev (1990). The conditional covariance matrix tH  of a 1×k  return vector 

tr  in CCC ( ),0(~1 ttt N Hr −Ω ) can be expressed as  

ttt RDDH = ,                                                 (23) 

where tD  a kk ×  diagonal matrix with time-varying standard deviations tih ,  of 

the i
th

 return series from GARCH on the i
th

 diagonal. R  is a sample correlation 

matrix of tr .  

The DCC is formulated as the following specification: 

tttt DRDH = , 

2
1

2
1

}{}{
−−

= tttt diagdiag QQQR ,                                      (24) 

111)( −−− ++−−′= tttt QBZZABAιιSQ ��� , ttt rDZ ×= −1 , 

where ι  is a vector of ones and �  is the Hadamard product of two identically sized 
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matrices which is computed simply by element by element multiplication. tQ  and 

S  are the conditional and unconditional covariance matrices of the standardized 

residual vector tZ  came from GARCH, respectively. A  and B  are estimated 

parameter matrices. Most cases, however, set them as scalars. In a word, DCC differs 

from CCC only by allowing R  to be time varying. 

 

IV. The realized range volatility 

There has been much research widely investigated for measuring volatility due to the 

use of high frequency data. In particular, the realized volatility, calculated by the sum 

of squared intra-day returns, provides a more efficient estimate for volatility. The 

review to realized volatility are discussed in Andersen et al. (2001), Andersen et al. 

(2003), Barndorff-Nielsen and Shephard (2003), Andersen et al. (2006a,b), and 

McAleer and Mederos (2008). Martens and van Dijk (2007) and Christensen and 

Podolskij (2007) replace the squared intra-day return by the high-low range to get a 

new estimator called realized range. 

 

Initially, we assume that the asset price tP  follows the geometric Brownian 

motion: 

t t t tdP Pdt Pdzµ σ= + ,                                                 (25) 

where µ  is the drift term, σ  is the constant volatility, and tz  is a Brownian 

motion. There are τ  equal-length intervals divided in a trading day. The daily 

realized volatility tRV  at time t can be expressed by: 

2

, , 1

1

(ln ln )t t i t i

i

RV P P
τ

−
=

= −∑ ,                                            (26) 
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where ,t iP  is the price for the time i × ∆  on the trading day t, and ∆  is the time 

interval. Then, τ × ∆  is the trading time length in a trading day. Moreover, the 

realized range tRR  is:  

2

, , 1

1

1
(ln ln )

4 ln 2
t t i t i

i

RR H L
τ

−
=

= −∑ ,                                      (38) 

where ,Ht i  and ,Lt i  are the highest price and the lowest price of the i
th

 interval on 

the t
th

 trading day, respectively. 

 

    As mentioned before, several studies suggest improving efficiency by using the 

open and close prices, like Garman and Klass (1980). Furthermore, assuming that tP  

follows a continuous sample path martingale, Christensen and Podolskij (2007) 

propose integrated volatility and show this range estimator remains consistent in the 

presence of stochastic volatility. 

0
0 0

ln ln
t t

t s s tP P ds dzµ σ −= + +∫ ∫ , for 0 t≤ < ∞ .                            (27) 

 

    The obvious and important question is that the realized range should be seriously 

affected by microstructure noise. Martens and van Dijk (2007) consider a 

bias-adjustment procedure, which scales the realized range by using the ratio of the 

average level of the daily range and the average level of the realized range. They find 

that the scaled realized range is more efficient than the (scaled) realized volatility. 

 

V. The Financial Applications and Limitations of the Range Volatility 

The range mentioned in this paper is a measure of volatility. From the theoretical 

points of view, it indeed provides a more efficient estimator of volatility than the 
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return. It is intuitively reasonable due to more information provided by the range data.  

In addition, the return volatility neglects the price fluctuation, especially as existing a 

near distance between the closing prices of two trading days. We can therefore 

conclude that the high-low volatility should contain some additional information 

compared with the close-to-close volatility. Moreover, the range is readily available, 

which has low cost. Hence, most researches related to volatility may be applied on the 

range. Poon and Granger (2003) provide extensive discussions of the applications of 

volatilities in the financial markets. 

 

    The range estimator undoubtedly has some inherits shortcomings. It is well 

known that the financial asset price is very volatile and is easy to be influences by 

instantaneous information. In statistics, the range is very sensitive to the outliers. 

Chou (2005) provides an answer by using the quantile range. For example, the new 

range estimator can be calculated by the difference between the top and the bottom 

5% observations on average.  

 

In theory, many range estimators in previous sections depend on the assumption 

of continuous-time geometric Brownian motion. The range estimators derived from 

Parkinson (1980) and Garman and Klass (1980) require a geometric Brownian motion 

with zero drift. Rogers and Satchell (1991) allow a nonzero drift, and Yang and Zhang 

(2000) further allow overnight price jumps. Moreover, only finite observations can be 

used to build the range. It means the range will appear some unexpected bias, 

especially for the assets with lower liquidity and finite transaction volume. Garman 

and Klass (1980) pointed that this will produce the later opening and early closing. 

They also said the difference between the observed highs and lows will be less than 
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that between the actual highs and lows. It means that the calculated high-low 

estimator should be biased downward. In addition, Becker (1983) pointed that the 

highest and lowest prices may be traded by disadvantaged buyers and sellers. The 

range values might therefore be less representative for measuring volatility.  

 

Before the range was adapted by the dynamic structures, however, its application 

is very limited. Based on the SV framework, Gallant, Hsu, and Tauchen (1999) and 

Alizadeh, Brandt, and Diebold incorporate the range into the equilibrium asset pricing 

models. Chou (2005) and Brandt and Jones (2006), on the other hand, fill the gap 

between a discrete-time dynamic model and range. Their works give a large extension 

for the applications of range volatility. In the early studies, Bollerslev, Chou, and 

Kroner (1992) give good illustrations of the conditional volatility applications. Based 

on the conditional mean-variance framework, Chou and Liu (2008a) show that the 

economic value of volatility timing for the range is significant in comparison to the 

return. It means that we can apply the range volatility on some practical cases. In 

addition, Corrado and Truong (2007) report that the range estimator has similar 

forecasting ability of volatility compared with the implied volatility. However, the 

implied volatilities are not available for many assets and the option markets are not 

sufficient in many developed countries. In such cases, the range is more practical. 

More recently, Kalev and Duong (2008) utilize Martens and van Dijk’s (2007) 

realized range to test the Samuelson Hypothesis for the futures contract. 

 

VI. Conclusion 

Volatility plays a central role in many areas of finance. In view of the theoretical and 

practical studies, the price range provides an intuitive and efficient estimator of 
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volatility. In this paper, we begin our discussion by reviewing the range estimators. 

There has been a dramatic increase in the number of publications on this work since 

Parkinson (1980) introduced the high/low range. From then on, some new ranges are 

considered with opening and closing price. The new range estimators are distributed 

feasible weights to the differences among the highest, lowest, opening, and closing. 

Through the analysis, we can gain a better understanding of the nature of range.  

 

Some dynamic volatility models combined with range are also introduced in this 

study. They are led into broad applications in finance. Especially, the CARR model 

incorporates both the superiority of range in forecasting volatility and the elasticity of 

the GARCH model. Moreover, the range-based DCC model, which combines CARR 

with DCC, contributes to the multivariate applications. This research may provide an 

alternative to risk management and asset allocation. At last, realized range replace the 

squared intra-day return of realized volatility by the high-low range to get a more 

efficient estimator. 

 

Undoubtedly, the range is sensitive to outliers in statistics, and however only few 

researches mention this problem. It’s useful and meaningful to utilize the quantile 

range to replace the standard range to get a robust measure of range. Moreover, the 

multivariate works for range are still in its infancy. Future research is obviously 

required for this topic. 
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