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Abstract

This paper extends the generalized Cox-Ross-Rubinstein (hereafter GCRR) model of Chung and Shih (2007). We provide a further analysis of the convergence rates and patterns based on various GCRR models. The numerical results indicate that the GCRR-XPC model and the GCRR-JR (
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) model (defined in Table 1) outperform the other GCRR models for pricing European calls and American puts. Our results confirm that the node positioning and the selection of the tree structures (mainly the asymptotic behavior of the risk-neutral probability) are important factors for determining the convergence rates and patterns of the binomial models.
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1. Brief Review of the Binomial Models
Ever since the seminal works of Cox, Ross, and Rubinstein (1979, hereafter CRR) and Rendleman and Bartter (1979), many articles have extended the binomial option pricing models in many aspects. One stream of the literature modifies the lattice or tree type to improve the accuracy and computational efficiency of binomial option prices. The pricing errors in the discrete-time models are mainly due to “distribution error” and “nonlinearity error” (see Figlewski and Gao (1999) for thorough discussions). Within the literature, there are many proposed solutions that reduce the distribution error and/or nonlinearity error.

It is generally difficult to reduce the distribution error embedded in the binomial model when the number of time steps (
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) is small, probably due to the nature of the problem. Nevertheless there are two important works which might shed some light on understanding or dealing with distribution error. First, Omberg (1988) developed a family of efficient multinomial models by applying the Gauss-Hermite quadrature
 to the integration problem (e.g. 
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 in the Black-Scholes formula) presented in the option pricing formulae. Second, Leisen and Reimer (1996) modified the sizes of up- and down-movements by applying various normal approximations (e.g. the Camp-Paulson inversion formula) to the binomial distribution derived in the mathematical literature.

Concerning the techniques to reduce nonlinearity error, there are least three important works (methods) worth noting in the literature. First, Ritchken (1995) and Tian (1999) showed that one can improve the numerical accuracy of the binomial option prices by allocating one of the final nodes on the strike price or one layer of the nodes on the barrier price. Second, Figlewski and Gao (1999) proposed the so-called adaptive mesh method which sharply reduces nonlinearity error by adding one or more small sections of fine high-resolution lattice onto a tree with coarser time and price steps. Third, Broadie and Detemple (1996) and Heston and Zhou (2000) suggested modified binomial models by replacing the binomial prices prior to the end of the tree by the Black-Scholes values, or by smoothing payoff functions at maturity, and computing the rest of binomial prices as usual.

Another stream of research focuses on the convergence rates and patterns of the binomial models. For example, Leisen and Reimer (1996) proved that the convergence is of order 
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 for the CRR model, the Jarrow and Rudd (1983) model, and the Tian (1993) model. Heston and Zhou (2000) also showed that the rate of convergence for the lattice approach can be enhanced by smoothing the option payoff functions and cannot exceed 
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 at some nodes of the tree. Concerning the convergence patterns of the binomial models, it is widely documented that the CRR binomial prices converge to the Black-Scholes price in a wavy, erratic way (for example, see Broadie and Detemple (1996) and Tian (1999)).
 Several remedies have been proposed in the literature, e.g. see Broadie and Detemple (1996), Leisen and Reimer (1996), Tian (1999),  Heston and Zhou (2000), Widdicks et al. (2002), and Chung and Shih (2007).
In a recent article, Chung and Shih (2007) proposed a generalized CRR (hereafter GCRR) model by adding a stretch parameter into the CRR model. With the flexibility from the stretch parameter, the GCRR model provides a numerically efficient method for pricing a range of options. Moreover, Chung and Shih (2007) also showed that (1) the convergence pattern of the binomial prices to the accurate price depends on the node positioning (see their Theorem 2) and (2) the rate of convergence depends on the selection of the tree structures (i.e. the risk-neutral probability p and jump sizes u and d). In this paper, we provide a further analysis of the convergence rates and patterns based on the GCRR models. Our results confirm that the node positioning and the selection of the tree structures are important factors for determining the convergence rates and patterns of the binomial models.
The rest of the paper is organized as follows. Section 2 discusses the importance of node positioning for monotonic convergence of binomial prices. We also summarize a complete list of binomial models with monotonic convergence in Section 2. Section 3 introduces the GCRR model and discusses its flexibility for node positioning. Various GCRR related models are also defined in Section 3. Section 4 presents the numerical results of various GCRR models (such as the GCRR-XPC and GCRR-JR models) against other binomial models for pricing a range of options. The numerical analysis is mainly focused the convergence rates and patterns of various binomial models. Section 5 concludes the paper.
2. The Importance of Node Positioning for Monotonic Convergence

Following the standard option pricing model, we assume that the underlying asset price follows a geometric Brownian motion, i.e.
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where 
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 is the drift rate, 
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 is the instantaneous volatility, and 
[image: image9.wmf]W

 is a Wiener process. Standard dynamic hedge and complete market argument assures that options can be valued by assuming risk neutrality, i.e. 
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. For pricing plain vanilla European options, Black-Scholes had derived closed-form solutions. For pricing other types of options such as American options, we have to rely on numerical approximation methods, e.g. a binomial model.
In an n-period binomial model, the time to maturity of the option (
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) is divided into n equal time steps, i.e. 
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. If the current stock price is S, then the next period price jumps either upward to uS with probability q or downward to dS with probability 
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. Again the standard dynamic hedge approach ensures that the risk-neutral probability p, instead of q, is relevant for pricing options. The binomial option pricing model is completely determined by the jump sizes u and d and the risk-neutral probability p. In the CRR model, three conditions, i.e. the risk-neutral mean and variance of the stock price in the next period and 
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, are utilized to determine u, d, and p as follows:  
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It is widely documented that the CRR binomial prices converge to the Black-Scholes price in a wavy, erratic way (for example, see Broadie and Detemple (1996) and Tian (1999)).
 This kind of convergent pattern can be explained by the following theorem.
Theorem 1.
Let 
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 be the n-period CRR binomial and continuous-time prices of a standard European call option with the terminal payoff 
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where 
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Proof: Please see Chung and Shih (2007).
Therefore, Theorem 1 shows that the node positioning (i.e. the relative distance of the strike price between the most adjacent nodes) is the main reason why the CRR binomial prices converge to the Black-Scholes price in a wavy, erratic way. To get a monotonic convergent pattern, we can (1) use the CRR model corrected with the quadratic function (see equation (1)) as suggested by Chung and Shih (2007); (2) fine tune the binomial model such that 
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 is a constant (see Tian (1999) ); (3) choose the appropriate number of time steps 
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 such that 
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 is a constant (see WAND (2002)); (4) smooth the option payoff function to be a continuous and differentiable function (see Heston and Zhou (2000)); (5) replace the binomial prices prior to the end of the tree by the Black-Scholes values and computing the rest of binomial prices as usual (see Broadie and Detemple (1996)); or (6) place the strike price in the center of the final nodes (see Leisen and Reimer (1996) and Chung and Shih (2007)).
Once the monotonic convergent pattern is derived, various extrapolation techniques are applicable to the above binomial models and the option price can be more efficiently calculated. The extrapolation formula used in this article is briefly summarized in the Appendix.
3. The Flexibility of GCRR Model for Node Positioning 

In the GCRR model of Chung and Shih (2007), a stretch parameter (
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) is incorporated into the CRR model so that the shape (or spanning) of the lattice can be flexibly adjusted. In other words, the condition that 
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, which is used in the traditional CRR model, is relaxed in the GCRR model. As a result, the GCRR model has one more degree of freedom to adjust the shape of the binomial lattice. We restate the GCRR model of Chung and Shih (2007) in Theorem 2.

Theorem 2.
In the GCRR model the jump sizes and probability of going up are as follows:
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where 
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 is a stretch parameter which determines the shape (or spanning) of the binomial tree. Moreover, when 
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, i.e., the number of time steps n grows to infinity, the GCRR binomial option prices converge to the Black-Scholes formulae for plain vanilla European options.
The stretch parameter (
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) in the GCRR model gives us the flexibility for node positioning. For instance, Chung and Shih (2007) placed the strike price in the center of the final nodes (termed GCRR-XPC model in their paper) and showed that the GCRR-XPC binomial prices converges to the accurate price smoothly and monotonically. A straightforward extension of Chung and Shih (2007) is to place the strike price on a certain place of binomial tree, e.g. on the 1/3-th or the 2/3-th nodes.
Morevoer, the idea of the GCRR model potentially can be applied to other binomial models. For example, we can generalize the Jarrow and Rudd (1983, hereafter JR) model by setting 
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By changing the stretch parameter 
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, the shape (or spanning) of the lattice can be flexibly adjusted so that one of the final nodes can be allocated on the strike price. 
In the following section, we will investigate the numerical performances of various GCRR models where one of the final nodes can be allocated on the strike price and therefore the convergent patterns are monotonic. In addition to CRR and JR models, six GCRR related models are investigated in the next section and their definitions are given in Table 1.
Table 1  The Definitions of Various GCRR Models

	Model
	Definition

	GCRR-XPC
	a GCRR model where the stretch parameter 
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 is chosen such that the strike price is placed in the center of final nodes

	GCRR- X on the 1/3-th node
	a GCRR model where the stretch parameter 
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 is chosen such that the number of nodes above the strike price is one third of the total final nodes and one of the final nodes can be allocated on the strike price

	GCRR- X on the 2/3-th node
	a GCRR model where the stretch parameter 
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 is chosen such that the number of nodes above the strike price is two third of the total final nodes and one of the final nodes can be allocated on the strike price

	GCRR-JR (p=1/2)
	a GCRR-JR model where the stretch parameter 
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 is chosen such that the up probability is the most close to 1/2 and one of the final nodes can be allocated on the strike price

	GCRR-JR (p=1/3)
	a GCRR-JR model where the stretch parameter 
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 is chosen such that the up probability is the most close to 1/3 and  one of the final nodes can be allocated on the strike price

	GCRR-JR (p=2/3)
	a GCRR-JR model where the stretch parameter 
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 is chosen such that the up probability is the most close to 2/3 and  one of the final nodes can be allocated on the strike price


4.  Numerical Results of Various GCRR Models 
In this section, we will investigate the convergence pattern, the rate of convergence, and the accuracy of six GCRR models defined in Table 1 against the CRR model and the JR model. Figure 1 shows the convergence pattern of the CRR model, the GCRR-XPC model, GCRR- X on the 1/3-th node model, and GCRR- X on the 2/3-th node model for pricing an in-the-money call option. The parameters in Figure 1 are adopted from Tian (1999): the asset price is 100, the strike price is 95, the volatility is 0.2, the maturity of the option is six months, and the risk-free rate is 0.06. The pricing error is defined as the difference between the binomial price and the Black-Scholes price. In Figure 1, the pricing errors are plotted against an even number of time steps ranging from 10 to 100.

It is apparent from Figure 1 that the convergence of the CRR model is not monotonic and smooth. Moreover, the pricing errors oscillate between positive and negative values. In contrast, the GCRR-XPC model, GCRR- X on the 1/3-th nodes model, and GCRR- X on the 2/3-th nodes model converge monotonically to the Black-Scholes price. Therefore, various extrapolation techniques are applicable to the GCRR-XPC model, GCRR- X on the 1/3-th node model, and GCRR- X on the 2/3-th node model. A similar convergence pattern is also embedded in GCRR-JR (p=1/2) model, GCRR-JR (p=1/3) model and GCRR-JR (p=2/3) model as shown in Figure 2.
Figure 1 The Convergence Patterns of the CRR Model and Three Related GCRR models
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This figure shows the convergence patterns of the CRR model, GCRR-XPC model, GCRR- X on the 1/3-th node model, and GCRR- X on the 2/3-th node model. The asset price is 100, the strike price is 95, the volatility is 0.2, the maturity of the option is six months, and the risk-free rate is 0.06.
Figure 2 The Convergence Patterns of the JR Model and Three Related GCRR models
[image: image48.emf]-0.2

-0.15

-0.1

-0.05

0

0.05

10 28 46 64 82 100

Number of Time Steps

Pricing Error

JR

GCRR-JR (p=1/3)

GCRR-JR (p=1/2)

GCRR-JR (p=2/3)

This figure shows the convergence patterns of the JR model, GCRR-JR (p=1/2) model, GCRR-JR (p=1/3) model and GCRR-JR (p=2/3) model. The asset price is 100, the strike price is 95, the volatility is 0.2, the maturity of the option is six months, and the risk-free rate is 0.06.
Table 2 reports the prices of European call and American put options calculated using the CRR model, the GCRR-XPC model, GCRR- X on the 1/3-th nodes model, and GCRR- X on the 2/3-th nodes model The parameters are: the asset price is 40, the strike price is 45, the asset price volatility is 0.4, the maturity of the option is six months, and the risk-free rate is 0.6. 
The errors of the CRR model do not necessarily go down as 
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 increases. For example, the error for the CRR model is 0.0001215 when 
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, worse than an error of 0.0000966 when 
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 increases for the the GCRR-XPC model, GCRR- X on the 1/3-th nodes model, and GCRR- X on the 2/3-th nodes model. Thus, one can apply the Richardson extrapolation method to increase the accuracy for these models.

Let 
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where 
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 is the n-step binomial price and 
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 is the Black-Scholes price.
 Define the error ratio as:
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The error ratio is a measure of the improvements in accuracy as the number of time steps doubles. It is clear from Table 2 that the pricing error of the GCRR-XPC model is almost exactly halved when the number of time steps doubles, i.e. the error ratio almost equals two. In contrast, Table 2 indicates that the GCRR- X on the 1/3-th nodes model and the GCRR- X on the 2/3-th nodes model have a slower convergence rate of order 
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. Similarly, in Table 3, the pricing error of the GCRR-JR (p=1/2) model is almost exactly halved when the number of time steps doubles, i.e. the error ratio almost equals two. In contrast, it seems that the GCRR-JR (p=1/3) model and the GCRR-JR (p=2/3) model have a slower convergence rate of order 
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. The extrapolation formulae when the error ratio is known are suggested in the Appendix.
	Table 2   Price and Error Ratios for European Calls and American Puts using the CRR Model and Three Related GCRR models

	European Call

	　
	CRR
	GCRR-XPC
	GCRR- X on the 1/3-th nodes
	GCRR- X on the 2/3-th node

	　n
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio

	50
	3.1127553 
	0.0197709 
	
	3.0761791 
	-0.0168054 
	
	3.1172274 
	0.0242430 
	
	3.0294775 
	-0.0635070 
	

	100
	3.0872827 
	-0.0057017 
	-3.4675560 
	3.0845771 
	-0.0084073 
	1.9988942 
	3.1164068 
	0.0234224 
	1.0350322 
	3.0495034 
	-0.0434811 
	1.4605662 

	200
	3.0891970 
	-0.0037874 
	1.5054227 
	3.0887797 
	-0.0042047 
	1.9994844 
	3.1109797 
	0.0179953 
	1.3015833 
	3.0650620 
	-0.0279225 
	1.5572070 

	400
	3.0929439 
	-0.0000405 
	93.5404085 
	3.0908818 
	-0.0021026 
	1.9997516 
	3.1070312 
	0.0140468 
	1.2810991 
	3.0739472 
	-0.0190372 
	1.4667279 

	800
	3.0925503 
	-0.0004341 
	0.0932659 
	3.0919330 
	-0.0010514 
	1.9998781 
	3.1033497 
	0.0103653 
	1.3551761 
	3.0801303 
	-0.0128541 
	1.4810200 

	1600
	3.0934409 
	0.0004564 
	-0.9511233 
	3.0924587 
	-0.0005257 
	1.9999397 
	3.1006093 
	0.0076248 
	1.3594105 
	3.0841135 
	-0.0088710 
	1.4490152 

	3200
	3.0930811 
	0.0000966 
	4.7226640 
	3.0927216 
	-0.0002629 
	1.9999699 
	3.0984943 
	0.0055099 
	1.3838448 
	3.0868519 
	-0.0061326 
	1.4465349 

	6400
	3.0931059 
	0.0001215 
	0.7954713 
	3.0928530 
	-0.0001314 
	1.9999849 
	3.0969498 
	0.0039653 
	1.3895148 
	3.0887076 
	-0.0042768 
	1.4339211 

	B-S price
	3.0929844
	 
	 
	3.0929844 
	　
	　
	3.0929844
	　
	　
	3.0929844
	　
	　

	American Put

	　n
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio

	50
	7.0271842 
	
	
	6.9997733 
	
	
	7.0165994 
	
	
	6.9792354 
	
	

	100
	7.0068793 
	0.0203050 
	
	7.0036989 
	-0.0039255 
	
	7.0174403 
	-0.0008409 
	
	6.9880395 
	-0.0088041 
	

	200
	7.0058851 
	0.0009942 
	20.4232027 
	7.0057155 
	-0.0020166 
	1.9465921 
	7.0155716 
	0.0018687 
	-0.4499987 
	6.9950865 
	-0.0070470 
	1.2493368 

	400
	7.0084847 
	-0.0025996 
	-0.3824407 
	7.0067137 
	-0.0009982 
	2.0202401 
	7.0139161 
	0.0016555 
	1.1287822 
	6.9990891 
	-0.0040026 
	1.7606073 

	800
	7.0076520 
	0.0008327 
	-3.1221175 
	7.0071955 
	-0.0004819 
	2.0714921 
	7.0123330 
	0.0015831 
	1.0457441 
	7.0018798 
	-0.0027906 
	1.4343098 

	1600
	7.0082090 
	-0.0005569 
	-1.4950395 
	7.0074457 
	-0.0002501 
	1.9264892 
	7.0111153 
	0.0012178 
	1.2999743 
	7.0036826 
	-0.0018028 
	1.5479088 

	3200
	7.0078375 
	0.0003715 
	-1.4993231 
	7.0075681 
	-0.0001224 
	2.0429200 
	7.0101693 
	0.0009460 
	1.2873403 
	7.0049213 
	-0.0012387 
	1.4553711 

	6400
	7.0078186 
	0.0000189 
	19.6141612 
	7.0076292 
	-0.0000611 
	2.0050691 
	7.0094751 
	0.0006942 
	1.3626916 
	7.0057600 
	-0.0008387 
	1.4770350 

	Notes: The Parameters are: the asset price is 40, the strike price is 45, the asset price volatility is 0.4, the maturity of the option is six months, the risk-free rate is 0.6, and the number of time steps starts at 50 and doubles each time subsequently. This table reports price, pricing errors, and error ratios from the CRR model, the GCRR-XPC model, the GCRR- X on the 1/3-th nodes model, the GCRR- X on the 2/3-th nodes model.


	Table 3   Price and Error Ratios for European Calls and American Puts using the JR Model and Three Related GCRR models

	European Call

	　
	JR
	GCRR-JR (p=1/2)
	GCRR-JR (p=1/3)
	GCRR-JR (p=2/3)

	　n
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio

	　
	　
	　
	　
	　
	　
	　
	　
	　
	　
	　
	　
	　

	50
	3.1106130 
	0.0176285 
	
	3.0646880 
	-0.0282964 
	
	3.1266496 
	0.0336651 
	
	3.0002820 
	-0.09270245 
	

	100
	3.0971533 
	0.0041689 
	4.2285686 
	3.0808786 
	-0.0121058 
	2.3374246 
	3.1229406 
	0.0299562 
	1.1238120 
	3.0342243 
	-0.05876007 
	1.57764370 

	200
	3.0935241 
	0.0005397 
	7.7248534 
	3.0867817 
	-0.0062028 
	1.9516768 
	3.1159382 
	0.0229538 
	1.3050670 
	3.0554242 
	-0.03756026 
	1.56442129 

	400
	3.0953566 
	0.0023722 
	0.2274975 
	3.0896514 
	-0.0033330 
	1.8609907 
	3.1107778 
	0.0177934 
	1.2900141 
	3.0676809 
	-0.02530355 
	1.48438717 

	800
	3.0940317 
	0.0010473 
	2.2650576 
	3.0914335 
	-0.0015509 
	2.1490994 
	3.1063754 
	0.0133909 
	1.3287666 
	3.0759322 
	-0.01705221 
	1.48388688 

	1600
	3.0923781 
	-0.0006063 
	-1.7273667 
	3.0921893 
	-0.0007951 
	1.9505708 
	3.1028496 
	0.0098652 
	1.3573885 
	3.0812860 
	-0.01169840 
	1.45765261 

	3200
	3.0930670 
	0.0000826 
	-7.3408261 
	3.0925832 
	-0.0004012 
	1.9816991 
	3.1001488 
	0.0071644 
	1.3769746 
	3.0849041 
	-0.00808034 
	1.44776122 

	6400
	3.0928771 
	-0.0001073 
	-0.7696826 
	3.0927856 
	-0.0001988 
	2.0184492 
	3.0981502 
	0.0051658 
	1.3869016 
	3.0873602 
	-0.00562422 
	1.43670451 

	B-S price
	3.0929844
	 
	 
	3.0929844 
	　
	　
	3.0929844
	　
	　
	3.0929844
	　
	　

	American Put

	　n
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio
	Price
	Error
	Error ratio

	　
	　
	　
	　
	　
	　
	　
	　
	　
	　
	　
	　
	　

	50
	7.0249121 
	
	
	6.9948508 
	
	
	7.0162674 
	
	
	6.9709080 
	
	

	100
	7.0142375 
	0.0106746 
	
	7.0020738 
	-0.0072230 
	
	7.0171254 
	-0.0008580 
	
	6.9846444 
	-0.01373646 
	

	200
	7.0098612 
	0.0043763 
	2.4391967 
	7.0048184 
	-0.0027446 
	2.6316614 
	7.0154509 
	0.0016745 
	-0.5123652 
	6.9931022 
	-0.00845776 
	1.62412507 

	400
	7.0101279 
	-0.0002667 
	-16.4106629 
	7.0061896 
	-0.0013712 
	2.0016892 
	7.0139527 
	0.0014982 
	1.1177210 
	6.9979603 
	-0.00485807 
	1.74097083 

	800
	7.0088470 
	0.0012808 
	-0.2082054 
	7.0069831 
	-0.0007935 
	1.7280424 
	7.0125108 
	0.0014419 
	1.0390038 
	7.0011871 
	-0.00322680 
	1.50553798 

	1600
	7.0074697 
	0.0013773 
	0.9299303 
	7.0073317 
	-0.0003486 
	2.2762930 
	7.0112810 
	0.0012298 
	1.1724385 
	7.0032567 
	-0.00206967 
	1.55909214 

	3200
	7.0078346 
	-0.0003649 
	-3.7744614 
	7.0075096 
	-0.0001780 
	1.9588599 
	7.0103178 
	0.0009631 
	1.2768974 
	7.0046428 
	-0.00138609 
	1.49316840 

	6400
	7.0076661 
	0.0001685 
	-2.1656175 
	7.0076004 
	-0.0000908 
	1.9605003 
	7.0095929 
	0.0007249 
	1.3286790 
	7.0055771 
	-0.00093430 
	1.48356412 

	Notes: The Parameters are: the asset price is 40, the strike price is 45, the asset price volatility is 0.4, the maturity of the option is six months, the risk-free rate is 0.6, and the number of time steps starts at 50 and doubles each time subsequently. This table reports price, pricing errors, and error ratios from the JR model, the GCRR-JR (p=1/3) model, the GCRR-JR (p=1/2) model, the GCRR-JR (p=2/3) model.


We also compare the numerical efficiency of the various GCRR models including GCRR-XPC model, GCRR- X on the 1/3-th nodes model, GCRR- X on the 2/3-th nodes model, GCRR-JR (p=1/2) model, GCRR-JR (p=1/3) model, and GCRR-JR (p=2/3) model. The above binomial methods are appropriate for applying the Richardson extrapolation to increase the accuracy.
 All the above methods are applied to price a range of European options and American options. The accuracy of each method is measured using the root mean squared errors (RMSE) with respect to the closed-from solution, or the GCRR-XPC model with a two-point extrapolation (n = 50000) in the case of American puts. The parameters of these options are adopted from WAND (2002) as follows:  the stock price is 40, the risk free rate is 0.06, the strike prices are 35 and 45, the volatilities are 0.2 and 0.4, and the maturities are 0.25 and 0.5.
To clarify the role played by Richardson extrapolation, we first compare the numerical efficiency of each method on a raw basis without any extrapolation procedure. The results are presented in Table 4. It is clear from Table 4 that GCRR-XPC outperforms the other methods for pricing European calls and American puts and GCRR-JR (p=1/2) model is the second best model. Moreover, the results of Table 4 also show that for European call options, GCRR-XPC and GCRR-JR (p=1/2) model monotonically converge to the Black-Scholes value at the 
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 rate. On the other hand, GCRR- X on the 1/3-th nodes model, GCRR- X on the 2/3-th nodes model, GCRR-JR (p=1/3) model and GCRR-JR (p=2/3) model monotonically converge to the Black-Scholes value at the 
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n

 rate. 
We compare the numerical efficiency of the various GCRR models when the Richardson extrapolation technique is applied to all methods. The number of time steps used for all models with a two-point extrapolation is (n, 2[n/4]) where [x] denotes the Gaussian symbol. In Table 5, it is very clear that GCRR-XPC also outperforms the other methods for pricing European calls and American puts and GCRR-JR (p=1/2) model is the second best model when the Richardson extrapolation formula is applied to all binomial models.
	Table 4 A Comparison of the Performance of Various Models Over a Range of Option Types and Parameters  (without Extrapolation)

	n
	GCRR

-XPC
	GCRR- X on the 1/3-th nodes
	GCRR- X on the 2/3-th nodes
	GCRR-JR (p=1/2)
	GCRR-JR (p=1/3)
	GCRR-JR (p=2/3)

	Approximation RMS Error for European Calls

	50
	9.17E-03
	2.55E-02
	3.17E-02
	1.50E-02
	2.18E-02
	4.40E-02

	100
	4.59E-03
	1.94E-02
	2.26E-02
	7.05E-03
	1.67E-02
	2.82E-02

	200
	2.29E-03
	1.34E-02
	1.50E-02
	3.61E-03
	1.22E-02
	1.80E-02

	400
	1.15E-03
	9.77E-03
	1.06E-02
	1.85E-03
	9.13E-03
	1.21E-02

	800
	5.74E-04
	6.91E-03
	7.32E-03
	9.06E-04
	6.72E-03
	8.23E-03

	1600
	2.87E-04
	4.94E-03
	5.15E-03
	4.56E-04
	4.90E-03
	5.64E-03

	3200
	1.43E-04
	3.51E-03
	3.61E-03
	2.28E-04
	3.53E-03
	3.91E-03

	6400
	7.17E-05
	2.49E-03
	2.54E-03
	1.14E-04
	2.54E-03
	2.72E-03

	Approximation RMS Error for American Put

	50
	4.46E-03
	1.70E-02
	1.67E-02
	8.29E-03
	2.12E-02
	1.89E-02

	100
	2.24E-03
	1.26E-02
	1.25E-02
	3.84E-03
	1.41E-02
	1.30E-02

	200
	1.11E-03
	8.51E-03
	8.47E-03
	1.98E-03
	9.36E-03
	8.72E-03

	400
	5.50E-04
	6.08E-03
	6.06E-03
	9.76E-04
	6.43E-03
	6.15E-03

	800
	2.75E-04
	4.25E-03
	4.24E-03
	4.86E-04
	4.46E-03
	4.34E-03

	1600
	1.37E-04
	3.01E-03
	3.00E-03
	2.45E-04
	3.13E-03
	3.06E-03

	3200
	6.81E-05
	2.12E-03
	2.12E-03
	1.22E-04
	2.20E-03
	2.17E-03

	6400
	3.39E-05
	1.50E-03
	1.50E-03
	6.07E-05
	1.55E-03
	1.53E-03

	Note. The options test set for both European and American options is from WAND (2002) and consists of combinations of strike prices of 35 and 45; maturities of 0.25 and 0.5, and volatilities of 0.2and 0.4. RMS errors averaged over the eight different sets of parameters are reported. GCRR-XPC,  GCRR- X on the 1/3-th nodes, GCRR- X on the 2/3-th nodes, GCRR-JR (p=1/2), GCRR-JR (p=1/3), and GCRR-JR (p=2/3) models are as described in the text.


	Table 5 A Comparison of the Performance of Various Models Over a Range of Option Types and Parameters  (with Extrapolation)

	n
	GCRR

-XPC
	GCRR- X on the 1/3-th nodes
	GCRR- X on the 2/3-th nodes
	GCRR-JR (p=1/2)
	GCRR-JR (p=1/3)
	GCRR-JR (p=2/3)

	Approximation RMS Error for European Calls

	50
	7.61E-04
	1.65E-02
	2.05E-02
	5.24E-03
	2.52E-02
	2.68E-02

	100
	2.95E-05
	9.91E-03
	7.73E-03
	1.54E-03
	1.23E-02
	1.20E-02

	200
	7.47E-06
	3.72E-03
	4.68E-03
	3.56E-04
	5.14E-03
	7.33E-03

	400
	1.88E-06
	2.16E-03
	1.85E-03
	1.80E-04
	3.12E-03
	2.78E-03

	800
	4.72E-07
	9.25E-04
	1.05E-03
	8.82E-05
	1.52E-03
	1.49E-03

	1600
	1.18E-07
	5.08E-04
	4.67E-04
	2.15E-05
	7.66E-04
	7.63E-04

	3200
	2.96E-08
	2.35E-04
	2.51E-04
	4.45E-06
	3.75E-04
	3.70E-04

	6400
	7.39E-09
	1.24E-04
	1.18E-04
	2.83E-06
	1.90E-04
	1.84E-04

	Approximation RMS Error for American Put

	50
	1.05E-03
	1.14E-02
	9.06E-03
	3.83E-03
	1.71E-02
	1.36E-02

	100
	1.03E-04
	5.43E-03
	4.40E-03
	1.09E-03
	7.64E-03
	6.59E-03

	200
	1.58E-04
	2.48E-03
	2.04E-03
	4.38E-04
	3.55E-03
	3.28E-03

	400
	2.09E-05
	1.09E-03
	9.43E-04
	1.28E-04
	1.85E-03
	1.62E-03

	800
	2.26E-05
	5.44E-04
	4.61E-04
	4.56E-05
	9.01E-04
	7.81E-04

	1600
	5.94E-06
	2.48E-04
	2.27E-04
	1.48E-05
	4.23E-04
	3.90E-04

	3200
	2.68E-06
	1.25E-04
	1.15E-04
	3.67E-06
	2.13E-04
	1.99E-04

	6400
	7.21E-07
	5.93E-05
	5.71E-05
	2.29E-06
	1.02E-04
	9.96E-05

	Note. The options test set for both European and American options is from WAND (2002) and consists of combinations of strike prices of 35 and 45; maturities of 0.25 and 0.5, and volatilities of 0.2and 0.4. RMS errors averaged over the eight different sets of parameters are reported. GCRR-XPC,  GCRR- X on the 1/3-th nodes, GCRR- X on the 2/3-th nodes, GCRR-JR (p=1/2), GCRR-JR (p=1/3), and GCRR-JR (p=2/3) models are as described in the text.


5. Conclusion
This paper provides a further analysis of the convergence rates and patterns based on the GCRR model of Chung and Shih (2007). We discuss how to correct the oscillatory behavior of the CRR model by various GCRR models so that the binomial prices converge to its continuous time price monotonically and smoothly and thus one can apply the Richardson extrapolation method to increase the accuracy for these models.

 It is shown that when the risk-neutral probability p equals or converges to 0.5, then the convergence rate is order of 
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On

. For example, GCRR-XPC and GCRR-JR (p=1/2) model monotonically converge to the Black-Scholes value at the 
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 rate. However, when p does note equal or converge to 0.5, the convergence rate is order of 
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On

. For example, GCRR- X on the 1/3-th nodes model, GCRR- X on the 2/3-th nodes model, GCRR-JR (p=1/3) model, and GCRR-JR (p=2/3) model monotonically converge to the Black-Scholes value at the 
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 rate.
Finally, the numerical results indicate that the GCRR models with various modifications are efficient for pricing a range of options. GCRR-XPC outperforms the other GCRR models for pricing European calls and American puts and GCRR-JR (p=1/2) model is the second best model.
Appendix: Extrapolation formulae for various GCRR models
Since the convergence pattern of the GCRR model is monotonic and smooth, we apply the extrapolation technique to enhance its accuracy. We first establish a two-point extrapolation formula using the GCRR binomial prices with geometrically increasing time steps n and 2n. The Black-Scholes price can be exactly calculated as follows:
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where 
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  are the binomial option prices according to the number of time steps equal to 2n and n respectively. Although the error ratio 
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 is generally unknown, we can still apply the following extrapolation formula to improve accuracy as long as the error ratio converges to a constant quickly enough: 
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 is the limit of the error ratio series. It is straightforward to prove that the pricing error remaining in the extrapolated price follows:
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In other words, the pricing error reduces from 
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 after a two-point extrapolation technique is applied.
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� The Gauss-Hermite quadrature is a well developed and highly efficient method in the numerical integration literature.


� Please also see Diener and Diener (2004) for a complete discussion of the price oscillations in a tree model.


� Please also see Diener and Diener (2004) for a complete discussion of the price oscillations in a tree model.


� Since there is no exact solution for the American put, following Tian (1999) and Heston and Zhou (2000), the pricing errors of the n-step binomial model is defined as: � EMBED Equation.3  ���.
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