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An Econometric Analysis of the Volatility Risk Premium

ABSTRACT

This paper examines the volatility risk premium, defined as the difference

between expected future volatility under the risk-neutral measure and the ex-

pectation under the physical measure. This risk premium represents the price of

volatility risk in financial markets. In order to compute this risk premium, one

must be able to accurately measure volatility under both measures. It is stan-

dard to use the VIX volatility index is used to proxy the expectation under the

risk-neutral measure. Estimation under the physical measure is less straight-

forward. Using ultra-high-frequency transaction data on SPDR, the S&P500

ETF, we implement a novel approach for estimating integrated volatility on

the frequency domain which allows us to isolate the biases from microstructure

noise from the true volatility process. Once we compute the volatility risk pre-

mium, we perform a comprehensive econometric analysis of its determinants

before, during, and after the Financial Crisis. The results indicate that the

volatility risk premium is very sensitive to liquidity and distress in the financial

system. We are able to link this statistical relationship to a recent literature in

financial economics dealing with intermediation and liquidity provision in the

options markets.



1 Introduction

The past decade has seen unprecedented swings in volatility. Consequently market

participants are no longer just concerned with the level of volatility, but also the

risk surrounding future levels of volatility. The desire to price and hedge volatility

risk has lead to new advances in financial econometrics and risk management. One

way to measure and study how volatility risk is priced in the market is to analyze

the volatility risk premium. The volatility risk premium is defined as the amount

by which some estimate of market-implied volatility exceeds (or falls short of) some

measure of realized volatility. A more technical definition is the difference between

expected future volatility under the physical measure and the risk-neutral measure.

In general, the volatility risk premium, as defined above, is thought to be negative

which implies that the expected volatility under the pricing measure is greater than

under the physical measure. The negative volatility risk premium indicates that

investors are willing to pay a premium to hedge volatility risk; it further signifies that

investors are risk averse.

Our contributions are twofold. First we use ultra-high-frequency data to estimate

integrated volatility. It is widely known that ultra-high-frequency financial data is

contaminated by microstructure noise. To address the microstructure noise we use

a novel method based on the Fourier transform, which allows us to work on the on

the frequency domain rather than time scale. This has the added benefit that the

microstructure noise can be autocorrelated and so we need not restrict ourselves to

the case where microstructure noise is independent over time. We then filter out

the noise component to de-bias the volatility estimator. Simulations (in Appendix

B) show that, under our method, sampling at higher frequencies allows for the most

precise estimation of integrated volatility. Furthermore our method performs better

than näıve subsampling rules that are typically used in high-frequency studies.

Then, after estimating the daily and monthly integrated volatility, we compare

these measurements to the VIX volatility index and construct a time series of the

volatility risk premium before, during, and after the recent Financial Crisis. We then

1



use traditional risk factors, along with other financial market and macroeconomic

variables including liquidity measures to try to understand the determinants of the

volatility risk premium. An interesting result we find is that, for a period of time

during the Financial Crisis, the volatility risk premium turns positive. While this

may seem paradoxical, we are able to explain and interpret these results within the

context of some recent literature linking the price of volatility in the markets to

macroeconomic factors, liquidity, and financial intermediation.

Specifically, we find that the TED spread– a measure of liquidity and confidence

in the financial sector – is best able to explain the positive spike in the volatility

risk premium. We also find that open interest – a proxy for option demand – is

a significant explanatory variable. Furthermore, the onset of the Financial Crisis

appears to mark a persistent structural break in the relationship between TED spread

and volatility risk premium as well as put option open interest and the volatility risk

premium which is evidence of strong nonlinear effects of these variables with the price

of volatility risk. We also find that term structure variables and credit spreads are

significant in explaining the volatility risk premium, while traditional financial risk

factors (Fama-French factors) have very little explanatory power.

The remainder of this paper is structured as follows. The next section, Section 2,

reviews the volatility risk premium. Then, in Section 3, we discuss estimating inte-

grated volatility using high-frequency data. Section 4 contains our empirical analysis

including data and econometric specifications. In Section 5 we present our results

with discussion about the economic interpretations and implications. Section 6 con-

cludes. We have two Appendices: Appendix A covers the technical details on the

Fourier transform method that we use to address microstructure noise in our estima-

tion of integrated volatility with the ultra-high-frequency data; Appendix B presents

some simulations that demonstrate the benefit of using ultra-high-frequency data in

estimating integrated volatility and the extent to which our method performs better.
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Figure 1: Time Series of Volatility Risk Premium
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Appendix

A The Fourier Transform Method

A.1 Fourier Domain Representation

To simplify the notion, the drift will not be considered, as it only accounts for a term

of order log(∆t)
√

∆t. First define the discrete Fourier transform of the increment

process ∆Utj = Utj+1
− Utj of a sample from a generic time series Utj , j = 1, · · · , N,

J
(U)
k =

 
1

N

N∑
j=1

∆Utje
−2πitjfk , fk =

k

T
, U = X, Y, ε. (1)

The first and second order structures of {J (X)
k }k are as follows:

E{J (X)
k } = 0,

ϕ
(X)
k1,k2

≡ Cov{J (X)
k1

, J
(X)
k2
}

(2)

In particular,

ϕ
(X)
k,k =

1

N

∫ T

0
E{σ2

s}ds (3)

A.1.1 Debias

Now comes the debias procedure. By calculating the first and second order structures

of {J (X)
k }k, an oracle shrinkage estimator (in which ϕ

(X)
k,k is unknown) would be

Lk =
ϕ
(X)
k,k

ϕ
(X)
k,k + a2|2 sin(πfk∆t)|2)

, (4)
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which yields an estimator ÿ�〈X,X〉(Lk)

T =
∑N−1
k=0 Lk|J

(Y )
k |2. To estimate Lk, the Whittle

log-likelihood is proposed, such that”Lk =
σ̂2
X

σ̂2
X + â2|2 sin(πfk∆t)|2

, (5)

where (σ̂2
X , â

2) comes from maximizing the modified Whittle log-likelihood

l(σ2
X , a

2) = −
N/2−1∑
k=1

log(σ2
X + a2|2 sin(πfk∆t)|2)−

N/2−1∑
k=1

|JYk |2

σ2
X + a2|2 sin(πfk∆t)|2

, (6)

which gives a final estimatorÿ�〈X,X〉(L̂k)

T =
N−1∑
k=0

”Lk|J (Y )
k |2. (7)

A.1.2 Properties

It was proved that (first is asymptotically unbiasedness, and second is consistency)

E{ÿ�〈X,X〉(L̂k)

T } = E{
∫ T
0 σ

2
t dt}+O(∆t1/4), (8)

{ÿ�〈X,X〉(L̂k)

T } =
∫ T
0 σ

2
t dt+Op(∆t

1/4). (9)

B Simulations

We simulate data using a Heston (1993) model (following the simulation in Olhede,

Sykulski, and Pavliotis (2009)), and compare the performance of Fourier method

and naive subsampling at different sampling frequency. The Heston (1993) model is

specified as:

dXt = (µ− νt/2)dt+ σtdBt,

dνt = κ(α− νt)dt+ γν
1/2
t dWt,
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where νt = σ2
t . The parameters are set as follows: µ = 0.05, κ = 5, α = 0.04, γ = 0.5,

and the correlation between the two Brownian motions Bt and Wt is ρ = −0.5.1 The

initial values are X0 = 0 and ν0 = 0.04. We take T as one day, and simulate data

with ∆t = 0.1s, which yields a sample path of length N = 234, 000 in one trading

day. We first calculate the underlying true integrated volatility by a Riemann sum

approximation of the integral, i.e.: T
N

∑N
i=1 σ

2
i =

∫ T
0 σ2

t dt. Then we add iid noise

ε ∼ N (0, σ2
ε ) to get the observed data Yi = Xi + εi, where we set σε = 5× 10−4.

We estimate the integrated volatility using two methods, the Fourier method and

the naive subsampling, which yields < X,X >Fourier
T and < X,X >subsampling

T . We

calculate the RMSE (root-mean-square error) of the estimates to the truth over 200

simulated sample paths. To further illustrate the effect of high frequency data, we

evaluate two methods from ∆t = 1s up to ∆t = 600s. Below is a figure showing the

RMSE of the Fourier method and the naive subsampling against decreasing sampling

frequencies.

The takeaway of this figure is two folds. First, the Fourier method can effectively

filter the microstructure noise, and works better than naive sampling method (we

didn’t implement other more sophisticated methods for comparison, as the simulation

is not to illustrate Fourier method is superior, but rather to justify the use of high

frequency data). Second, if we are able to filter the microstructure noise, higher

frequency gives us a better estimate as we are able to utilize more data (hence more

information).

1These are the same as those used in the Olhede, Sykulski, and Pavliotis (2009) simulations.
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Figure 2: RMSE of Two Methods

8


