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market timing, it is necessary to consider both market level and volatility timing 
behavior as well as security selection ability.  We develop and implement measures that 
accommodate all three components.  A well specified measure of performance is the 
sum of the three components of ability.  Estimating the measures on active US mutual 
funds we find that, allowing for market level and volatility timing, there is no evidence 
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sorted by expense ratio, return gap, active share or turnover. However, sorting by factor 
model R-squares confirms results in Amihud and Goyenko (2011), where the low R-
square funds have better performance. 
 



1. Introduction 

Researchers’ attempts to measure the investment performance of portfolio managers have 

long been hobbled by market timing.  If fund managers attempt to trade in anticipation of 

market-wide factors (market timing behavior), it has been known since Grant (1977) that 

security selection ability is hard to measure.  If managers attempt to both time the markets 

and pick undervalued securities, it is hard to distinguish one skill from the other.  

Commonly, market timing and selectivity performance are measured assuming only one 

type of ability exists.  This leads to misspecification if both types of behavior may be 

present.   Measures of performance that account for market timing have been developed, 

but these make very strong assumptions such as “perfect” timing ability of a stylized form, 

or the validity of a simple options pricing model.  (See for example the discussion in 

Aragon and Ferson, 2008.)  Furthermore, measures that do attempt to accommodate timing 

behavior typically model the ability to time the level of market factors, but not to time 

market volatility.  Busse (1999) documents volatility timing behavior in US mutual funds.  

If both level and volatility timing behavior are present, models that leave out one of them 

are misspecified.1 

 This paper develops and implements simple measures of performance that account 

for both market and volatility timing as well as security selection ability.  A well-specified 

measure of total performance is a weighted sum of the three components.  Using our new 

measures, we revisit the issue of US mutual fund performance.   

 The primary reason that previous measures of performance have trouble with 

market timing behavior is the nonlinearity it creates in portfolio returns.  Classical 

                                           
1 Cao, Chen, Liang and Lo (2011) consider both market and volatility timing for hedge 
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measures of timing, such as Treynor Mazuy (1966) and Merton and Henriksson (1981) 

identify timing ability through this nonlinearity.  One problem with assessing timing in this 

way is that there are many other sources of nonlinearity that may be unrelated to market 

timing (see for example, Chen Ferson and Peters (2010) for a discussion).  Second, if timing 

is left out of a returns-based performance regression, the performance measure is biased 

when the missing nonlinear term is correlated with the included linear term.  By using 

portfolio holdings instead of reported returns, we avoid these problems.   

 Our measures use portfolio weights, and are thus related to the rapidly developing 

literature on holdings-based performance measures that Grinblatt and Titman (1989, 1993) 

kicked off.  We develop the relation of our measure to previous weight-based measures, 

and point out sources of potential misspecification in those measures that our new 

measures can avoid.  We show that holdings-based performance measures are misspecified 

if they leave out the volatility timing component.  All previous studies, excepting Busse 

(1999) and Cao et al. (2011) to our knowledge leave out this component.  Boguth et al. 

(2011) suggest that volatility timing may impart substantial biases to estimates of alpha.  

Aragon and Martin (2011) suggest that hedge funds may actively time volatility.  Our 

measures extend the weight-based performance measures of Grinblatt and Titman (1989, 

1993) to accommodate volatility timing and selectivity in a parsimonious way.  Only three 

parameters are needed for each mutual fund, which is much more tractable than returns-

based market timing models.  This allows us to easily examine models with multiple 

benchmarks.2 

                                                                                                                                              

funds, but their returns-based approach is very different from ours. 
2 Of course, using weights we do not exploit the information in high frequency mutual fund 
returns, which Bollen and Busse (2001) find helps to detect market timing ability.  Ferson 
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 We implement our measures on a sample of US active, open-ended mutual funds.  

We find that when only level and volatility timing ability are measured in an asset 

allocation setting, the measures suggest weak negative timing ability that is not statistically 

significant, a finding consistent with a large literature on timing ability that does not 

include all the components of performance.   When level timing, volatility timing and 

selectivity ability are examined jointly, we find no evidence of ability at the level of broad 

groups of funds.  Sorting funds on expense ratios, turnover, return gap or active share 

reveals no significant performance, either.  Sorting on factor model regression R-squares, 

following Amihud and Goyenko (2011), we confirm their finding that the low R-square 

funds deliver higher alphas and greater selectivity performance.  With this exception, the 

findings seem to confirm the results of recent studies such as Fama and French (2010), who 

find little evidence of performance based on traditional measures of alpha.  Our results also 

suggest that Busse’s (1999) finding of volatility timing behavior is not robust and that 

previous studies finding ability using weight based measures (e.g. Grinblatt and Titman 

(1993), Daniel, Grinblatt Titman and Wermers, 1997) may have been biased by omitted 

variables. 

 The rest of the paper is organized as follows.  Section 2 describes the models and 

their estimation.  Section 3 describes our data.  Section 4 presents the main empirical results 

and Section 5 concludes and offers suggestions for future research. 

                                                                                                                                              

and Khang (2002) examine the power of weight-based approaches and find that the 
information in the portfolio weights offsets the loss of information in reported fund returns, 
and that measures using weights can be quite powerful. While we use daily stock return 
data in some of our analyses, combining these data with high frequency mutual fund data 
in a mixed-interval data analysis is a good topic for future research.  By abstracting from 
costs, weight-based measures miss the possibility that the ability to trade at low cost may 
be a form of skill.   
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2. The Models 

 Consider a definition of abnormal performance, or alpha, based on the Stochastic 

Discount Factor (SDF): 

 

   αp = E(m rp),                                                                                           (1) 

 

where m is the stochastic discount factor and rp is the return of the fund in excess of a short-

term Treasury bill.   This measure of performance goes back to Grinblatt and Titman (1989), 

Glosten and Jagannathan (1994) and Chen and Knez (1996) who adopt specific SDF models. 

 Ferson and Lin (2011) argue that if m is the client’s marginal rate of substitution, Equation 

(1) is the best way to specify a valid performance measure.  We assume the SDF is given by 

popular linear factor models, following Cochrane (1996):   

 

   m = a - b’rB,                                                                                              (2) 

 

where rB is a vector of K benchmark portfolio excess returns and a and b are market-wide 

parameters to be estimated.   The simplest special case is the Capital Asset Pricing Model 

(CAPM, Sharpe, 1964) where K=1 and a broad market index is the benchmark.  We start 

with equations (1) and (2) in their simple “unconditional” form and discuss conditional 

versions of the model below. 

 

2.1 A Simple Asset Allocation Model 
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 We start with the simplest model that emphasizes the two kinds of market timing 

ability in an asset allocation setting.  Assume the fund forms a portfolio from the 

benchmarks with weights, w, set at the beginning of the period before the returns are 

realized, so the portfolio excess return is rp = w’rB.   In this formulation, the “cash” position 

invested in the short term Treasury security is 1 – 1’w, where 1 is a K-vector of ones.  A 

simple performance measure follows by substitution of Equation (2) into Equation (1): 

 

  αp = a E(w’rB) – b E(rBrB’ w).                                                                           (3) 

 

The first term of (3) captures market level timing through the covariance between the 

portfolio weights and the subsequent factor returns.  The second term captures “volatility 

timing,” through the relation between the portfolio weights and the second moment matrix 

of benchmark returns.    

 The benchmarks have zero alphas in (1) by construction when (2) describes the SDF: 

 αB = a E(rB)’ – b E(rBrB’) = 0.  We can use this to write the measure in (3) in terms of 

covariances:  

 

  αp = a Cov(w’rB) – b’ E{ [rBrB’ – E(rBrB’)] w},                                                    (4) 

 

where the notation Cov(w’rB) denotes the sum of the covariances between the weights and 

the corresponding future benchmark excess returns.   In our estimation scheme, described 

below, we use Equation (4). 

 Equation (4) provides insight about and offers practical advantages over traditional 
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measures.  The first term in (4) is essentially the weight-based measure of Grinblatt and 

Titman (1989, 1993) applied at the “asset allocation” level.  Like their measure and its 

subsequent elaborations (see e.g., Daniel et al. (1997), Wermers, 2000), the measures focus 

on portfolio weights instead of the reported, after-fees-and-costs returns of the mutual 

funds.  This measures manager ability on a clean, before-cost basis.   The performance can 

then be compared with costs.  Traditional returns-based measures of performance mix the 

after-cost returns of funds with the before-cost returns of the benchmarks, creating an 

“apples to oranges” comparison.   

 The analysis here shows that the original Grinblatt and Titman measure is 

misspecified in the presence of market timing behavior, because it excludes the volatility 

timing term.  This is because their measure is developed under joint normality with 

homoskedasticity, so an informed manager never gets a signal that second moments will 

change.  We evaluate the empirical impact of the missing timing terms. 

 Previous market timing measures, such as the classical quadratic regression of 

Treynor and Mazuy (1966) are difficult to apply for more than one or two benchmarks.   

This is because the regression includes on the right hand side the benchmarks, the squared 

benchmark returns, and with multiple benchmarks, the products of the benchmarks.  With 

K benchmarks, there are 2K + (K2 - K)/2 coefficients to be estimated.  For example with 

three factors there are 9 slope coefficients plus an intercept in the regression for each fund.  

This can be a degrees-of-freedom challenge when many mutual funds have short sample 

histories.  In contrast, the second term of (4) uses the K x K second moment matrices of the 

benchmarks, aggregated through a single market-wide parameter, b, of length K, 

appropriate for their valuation by the model.  This only requires two parameters for each 
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fund; one captures market level timing and one captures volatility timing. 3  We must also 

estimate the market-wide parameters a and b and the mean E(rB), but these are identified 

from the benchmarks as described below, and are the same for each fund. 

 

2.2 Security Selection 

 We now bring security selection ability into the model.   Consider a factor model 

regression for the excess returns of the N underlying securities: 

 

   r= a + β rB + u,                                                                                                 (5) 

 

where β is the N x K matrix of regression betas and E(urB)=E(u)=0.  Let the vector of 

idiosyncratic returns be the sum of the intercept plus residuals:  v = a + u.  Security 

selection ability means that the past portfolio weights of a fund are correlated with future 

values of v.  A fund forms a portfolio of the N assets using weights, x, as: 

 

    rp = x’r = (x’β)rB + x’v.                                                                                   (6) 

 

Note that w’=x’β corresponds to the K-vector of asset allocation weights in the simpler 

market timing model.  Our approach is to estimate these using a “bottom up” method and 

                                           
3 If a manager times market volatility traditional returns-based measures are even more 
complicated.  Consider a generalization of the Admati et al. (1986) model where the 
manager gets a signal that is informative about the level of the market and also about its 
future volatility.  The portfolio weight is then related to the future market return and its 
square, and the portfolio return – the product of the weight and the market return -- is 
related to the market as a cubic function.  This adds cubic factors to the Treynor-Mazuy 
regression, further expanding the number of regressors and using up degrees of freedom. 
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daily data for the underlying asset returns and benchmarks, similar to Jiang, Yao and Yu 

(2007) and Elton, Gruber and Blake (2009).   Substituting Equation (6) into the definition of 

alpha we obtain: 

 

  αp = a E(w’rB) – b’ E(rBrB’ w) + E{(a-b’rB) x’v},                                               (7) 

       = a Cov(w’rB) – b’ E{ [rBrB’ – E(rBrB’)] w}+ E{(a-b’rB) x’v}. 

 

The first two terms of each line in the equations (7) appear in equations (3) and (4) 

respectively, while the third term captures selectivity ability.  The third term says that if the 

portfolio-weighted average of the idiosyncratic returns of the securities in the fund have a 

positive covariance with the marginal rate of substitution, they represent performance with 

positive value. 

 It helps to the break the last term of Equation (7) into two pieces for interpretation: 

 

  E{(a-b’rB) x’v} =  a E(x’v) -  b’ E(rBv’x).                                                             (8) 

 

The first piece is a classical measure of selectivity; that is, the covariance between the 

portfolio weights and the subsequent abnormal returns, summed across the securities in the 

fund.    The second term relates to information in the portfolio weights about future second 

moments and is priced using the coefficient, b, in the same way as the volatility timing 

ability.  This term captures the possibility that managers’ superior information reveals that 

the residuals of the factor model regression (5) may not be uncorrelated with the factors, 

conditional on their finer information.  For example, a manager might have information 
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that a stock is likely to have a large idiosyncratic return if the stock market return is high.  

The selectivity ability in Equation (8) is zero when the portfolio weights have no 

information about the future idiosyncratic return, v, and no information about the product, 

vrB. 

 

2.3 Relation to Previous Holdings-based Performance Measures 

 As mentioned above the first term of Equations (7) is essentially the weight-based 

performance measure first developed by Grinblatt and Titman (1989, 1993) applied at the 

asset allocation level.   To relate our measure more explicitly to the original Grinblatt and 

Titman measure, substitute in the regression (5) and use x’β = w’ to see that: 

 

    Cov(x’r) = Cov(w’rB) + Cov(x’v).                                              (9) 

 

This expression shows that the Grinblatt Titman measure on the left-hand side of (9) leaves 

out the two terms related to information about the second moments that appear in our 

measure in (7).  There is no volatility timing term, and the second component of selectivity in 

Equation (8) is missing.  If information about time-varying second moments, as captured in 

our measure, is important, then the original measure is misspecified for these two reasons. 

 A number of popular performance measures in the literature essentially add and 

subtract pieces to the Grinblatt and Titman measure, which are interpreted as components 

of the total performance.  A well-cited example is Daniel, Grinblatt, Titman and Wermers 

(DGTW, 1997).  In this example each security i held in a fund gets its own benchmark 

return, Rtbi at each period, t.  In addition, the fund is assigned a set of benchmark weights 
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equal to its actual holdings reported k periods before: xi,t-k.  The DGTW measure is: 

 
         DGTWt+1 = Σi xit (Ri,t+1 - Rt+1bi) + Σi (xit Rt+1bi - xi,t-kRt+1bi(t-k)) + Σi xi,t-k Rt+1bi(t-k) ,          (10) 
 
 

where Rt+1bi(t-k)  is the benchmark return associated with security i at time t-k.  The first term is 

interpreted as "selectivity," the second term as "characteristic timing" and the third as the 

return attributed to the style exposure.  The characteristic timing term is similar to our term 

that measures level timing.  The DGTW measure does not capture volatility timing, so it will 

be misspecified if volatility timing is important.   

 If we take the security specific benchmark, Rt+1bi  in (10),  as the analogue to the 

systematic component of return in our Equation (6), then the first term measuring selectivity 

in the DGTW measure is analogous to the first component of our selectivity term in Equation 

(8).   We will compare the two measures below.  Our equation (8) shows that the DGTW 

measure is misspecified as a measure of selectivity if the higher order effects, E(rBv’x) are 

important.   

 The original Grinblatt and Titman measure and the DGTW measure use unconditional 

covariances, and are also misspecified if conditional covariances given public information are 

important, as shown by Ferson and Khang (2002).  We therefore extend our measures to 

consider conditioning information below.  We first describe estimation for the unconditional 

case.  Then, the conditional case is a simple extension. 

 

2.4 Estimation 

 We estimate the market-wide parameters a and b through the short-term Treasury 
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return and the excess return of the benchmarks, as shown in Equations (11a-11b) below.  

For each fund we estimate a market timing component, denoted below as αm, a volatility 

timing component ασ and a selectivity component, αS.   The total alpha for each fund is then 

αp = αm + ασ + αS.  The model is estimated using the Generalized Method of Moments 

(GMM, Hansen, 1982) through the following moment conditions: 

 

  ε1= (a – b’ rB)rB                                                                                                  (11a) 

  ε2= (a – b’ rB’)Rf  - 1                                                                                          (11b) 

  ε3= rB –µB                                             (11c) 

  ε4= αm – a(rB -–µB) ’w                                                                                       (11d) 

  ε5= ασ + b’(rBrB’)w – a µB ’w                                                                           (11e) 

  ε6= αS – [(a-b’rB) v’x].                                                                                       (11f) 

 

In Equation (11e) we use the condition 0 = a E(rB)’ – b E(rBrB’) to avoid the need to estimate 

the parameters of the matrix E(rBrB’).  Because the condition holds exactly at the parameter 

values that satisfy (11a) and (11b), no additional restrictions are imposed in using this 

condition.  In Equation (11f), we use v= r – WrB, where W is the N x K matrix of bottom-up 

betas estimated using daily data for the stock returns and the benchmarks and v is an N-

vector of the idiosyncratic returns of the stocks held.4   The moment conditions state that 

E(ε)=E(ε1,ε2,ε3,ε4,ε5,ε6)=0.  We use the optimal GMM standard errors with the delta method 

to get standard errors for the total performance measures. 

                                           
4 Each of the individual betas in x’β is estimated by regression using daily data, and the 
system misses the estimation error in the daily bottom up betas, which we essentially take 
as data.  While betas are estimated with vastly greater precision than alphas, especially 
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 The GMM system (11) is exactly identified and has a block diagonal structure with 

respect to the fund-specific performance parameters, which is particularly convenient for 

our application.  Results in Farnsworth et al. (2002) imply that the estimates of performance 

for each fund, when the system is estimated separately for each fund as we do here, are 

numerically identical to using a full system with many funds stacked together, which is not 

feasible.  If there is public information, Z, we can interpret all of the equations’ expectations 

as conditional on Z.   The parameters a and b will also be functions of Z.  We discuss such 

conditional models below. 

 

3. The Data 

 We study data for 1984-2010 from the Center for Research in Security Prices Mutual 

Fund database.  We exclude fixed income, international, money market, sector and index 

funds,5 focusing on active, US equity funds.  We subject the fund data to a number of 

screens to mitigate omission bias (Elton Gruber and Blake 2001) and incubation and back-

fill bias (Evans, 2010).  We exclude observations prior to the reported year of fund 

organization, and we exclude funds that do not report a year of organization or which have 

initial total net assets (TNA) below $15 million in their otherwise first eligible year to enter 

our data set.  We combine multiple share classes for a fund, focusing on the TNA-weighted 

aggregate share class.   

 We first focus our analysis on portfolios of funds.   We study US open-ended Equity, 

Asset Allocation and Balanced funds.   These broad groups are determined using the 

                                                                                                                                              

with daily data, this caveat should be kept in mind when interpreting our empirical results. 
5 We identify and remove index funds both by Lipper objective codes (SP, SPSP) and by 
searching the funds’ names with key word “index.” 
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investment objective codes from CRSP.6  To avoid a possible look-ahead bias due to 

strategic reporting of investment objectives (Sensoy 2009) we use the most recent, 

previously reported code to categorize the funds.  When we use holdings data we merge 

the CRSP and Thompson holdings data using MFLINK and we lose about 8% of the funds 

(4% of the TNA) due to missing WFICN links.    

 We group funds according to several attributes, including the expense ratio, fund 

size (TNA), age, turnover, return gap, active share and factor model regression R-squares. 

These are described more fully below. 

  We use daily returns data to estimate “bottom up” betas for the individual stocks 

held by the funds.  The returns data are from CRSP.  Our bond index is the Barclays US 

Aggregate bond index return.  This is a value-weighted index of government and 

investment-grade corporate issues that have more than 1 year remaining until maturity.  

We obtain daily data for the CRSP stock market factor, the Fama – French (FF, 1996) factors 

and the UMD momentum factor, from Kenneth French’s web site. 

 

4. Empirical Results 

4.1 Market and Volatility Timing Using Asset Allocation Weights 

 We start with a simple case, where the CAPM is the benchmark model and we focus 

                                           
6 US equity funds are defined as those with policy codes  CS, Flex, I-S; Weisenberger 
objective codes GCI, IEQ, IFL, LTG, MCG, SCG, G, G-I, G-I-S, G-S, G-S-I, GS, I, I-G, I-G-S, I-
S, I-S–G, S, S-G-I, S-I, S-I-G; SI objective codes AGG, GMC, GRI, GRO, ING, SCG; or Lipper 
objective codes  CA, EI, EIEI, ELCC, G, GI, LCCE, LCGE, LCVE, LSE, MC, MCCE, MCGE, 
MCVE, MLCE, MLGE, MLVE, MR, S, SCCE, SCGE, SCVE, SESE, or SG; Asset Allocation 
funds are identified as funds with Weisenberger objective codes AAL; SI objective codes  
CPF, EPR, FLX, IMX or Lipper objective code FX.  Balanced style funds are identified as 
those with policy code: Bal; Weisenberger objective code BAL; SI objective code BAL or 
Lippoer objective codes B, BT, MTAC, MTAG, MT or AM.  
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on timing ability.  Thus, we estimate only the equations (11a) – (11e).   For this exercise we 

take the asset allocation weights from CRSP, which reports the percentage holdings in 

stocks, bond and cash on an annual or quarterly basis.  Our analysis is based on a quarterly 

holding period.  Although some forms of ability may reveal themselves at longer horizons, 

it seems likely that at least some of the benefits to smart position would accrue during the 

first quarter.   

 Table 1 presents our estimates of performance and its decomposition into market 

timing and volatility timing for each fund group: Asset Allocation, Balanced and the full 

active US Equity sample.  The estimate of the market-wide parameter a is strongly 

statistically significant, at 1.03, and the estimate of the parameter b is 2.42 with a t-statistic 

of 1.82.  In the CAPM, the value of a is the inverse of the gross risk-free rate plus a risk 

adjustment, while the value of b is a version of relative risk aversion, discounted by a pure 

time preference parameter.  The values seem to imply economically reasonable magnitudes.  

 The performance estimates in Table 1 suggest insignificant “negative” market level 

timing ability for the combined active equity sample, and insignificant positive ability for 

the Asset Allocation group, which is similar to many studies of unconditional market 

timing ability.  Market volatility timing ability is small and not statistically significant.  The 

combined performance measure is also small, positive for the Asset Allocation group at 6 

basis points per quarter, and not statistically significant, with a t-ratio of 1.81.   We find 

similar results when we further break each group of funds into thirds on the basis of their 

expense ratios, turnover, size or age (these results are not tabulated).    

 Possibly, the market timing model using only the market benchmark is misspecified, 

as funds might consider allocations to bonds, stocks and cash.  Since stock and bond returns 
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are correlated, leaving out the bonds could bias the market timing results.  Our second 

example is a two-factor model, with a stock market index and the bond index.  The funds’ 

weights are measured as the fractions reported by CRSP for holdings in stocks and in 

bonds.  The weight in bonds includes convertible bonds, corporate bonds, municipal bonds 

and government bonds.  The weights are normalized to sum to one minus the reported 

holdings in cash.  This allows us to see how excluding a bond market factor, as most studies 

of market timing have done, might affect the findings.   

 The results for the two-factor asset allocation model are summarized in Table 2.  The 

point estimate of the parameter a is 1.19 and the point estimate of b for the market index is 

2.47, both very similar to Table 1.  The value of the b parameter for the bond index is 16.76.  

All of these coefficients are statistically significant.  In a two-factor Merton (1973) model the 

b coefficient for bonds depends on the elasticity of the marginal utility of wealth with 

respect to the bond factor and the variance of the bond factor, the latter being a relatively 

small number.  This results in a scaled-up value of the parameter b.     

 The performance estimates in Table 2 suggest small but insignificant “negative” 

market level timing and small positive volatility timing ability, the latter consistent with 

Busse (1999).  The volatility timing coefficients are at the margins of statistical significance, 

with t-ratios of 2.02 or less.  The combined performance measure is close to zero, at 9 basis 

points per quarter or less.   We again find similar results when we further break each group 

of funds into thirds on the basis of their expense ratios, turnover, size or age (these results 

are not tabulated).   Overall, this section shows that or framework reproduces results 

essentially similar to what previous studies of unconditional timing ability have found 

through other methods. 
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4.2 Selectivity and Multiple Benchmarks  

 Possibly, the weak evidence for investment ability at the asset allocation level is 

related to the use of CRSP data for the asset allocation weights.  Now we bring in the 

holdings data and measure the portfolio weights, x, held by the fund in individual stocks.  

We combine this with the CRSP data on holdings in bonds and normalize the weights to 

sum to one minus the CRSP reported holdings in cash.  The asset allocation weights for the 

benchmarks are now derived “bottom up” from the individual stocks’ betas, estimated 

using daily data over the full available sample for each stock.  We consider two multifactor 

benchmarks: the FF3 factors and the Carhart (1997) 4-factor model.  The results are 

summarized in Tables 3 and 4. 

 Table 3 presents results using the FF 3 factor benchmark.  The point estimates of the 

parameter a and the b coefficient for the market factor are similar to the previous cases, but 

the b parameter is no longer statistically significant.  The b coefficients on the HML and 

SMB factors are also not significant.     

 The timing performance results in Table 3 are essentially similar to the results using 

only the asset allocation weights.  The selectivity ability term is small and statistically 

insignificant.  The total alphas in Table 3 are economically small, at 14 basis points per 

quarter.  The standard errors say that the alphas are also reliably close to zero.  For 

example, for the US equity sample, the estimate of alpha is 11 basis points and the standard 

error is 14 basis points per quarter, so a two-standard error confidence band covers (-17, 

+39) basis point per quarter.  These values are reliably smaller than the average of expense 

ratios plus trading costs.  We find similar results when we further break each group of 
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funds into thirds on the basis of their expense ratios, turnover, size and age (these results 

are not tabulated).    

 Table 4 presents results using the Carhart 4-factor benchmark.  All four of the b 

coefficient estimates are positive and the coefficients for the HML and SMB factors are now 

statistically significant.  The performance results are similar to those for the FF 3 factor 

model.   

 

4.3 Conditioning Information 

 Previous studies find that performance inferences about timing and overall 

performance can be sensitive to the effects of public information.  In particular, Ferson and 

Schadt (1996) and Becker et al. (1999) find that market timing ability looks better in models 

that account for public information.  Consistent with those studies, we find weak negative 

timing ability in the unconditional models, which combines to produce insignificant total 

alphas.  Perhaps, conditional models can produce a different result.  This section considers 

conditional versions of the models. 

 

4.4 Conditional Models 

 The conditional models follow studies such as Cochrane (1996) and assume that the 

parameters a and b are linear functions of the lagged instruments, Z, and that the 

conditional means of the benchmark excess returns are linear functions of Z.7  Thus, a and b 

are replaced by the linear functions a(Z) and b(Z), and µB is replaced by  δBZ in Equations 

                                           
7 We also examine parametric conditional models that assume linear functional forms for 
the first and second conditional moments of the benchmark returns and derive nonlinear 
functions for time varying at and bt coefficients from the restrictions of the model.  These 
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(11c-e), where δB is a K x L matrix of parameters and L is the number of lagged instruments 

in Z.  The modified equations (11a-c) are multiplied by each element of Z.  The GMM with a 

Newey-West covariance matrix using three lags is used in estimation of the standard errors, 

and the system is exactly identified.8    

 Table 5 reports results for conditional market timing in the CAPM.  The SDF 

coefficients aj and bj, j=0,…,4 are reported in the following order:  Intercept, dividend yield, 

Tbill yield, TERM  and DEF.  The estimates of the market-wide parameters suggest that the 

coefficient b(Z) is a time-varying function of the lagged instruments; indicating a time-

varying price of market risk, while the we do not reject the hypothesis that a(Z) is a 

constant function over time.    

 The performance results in Table 5 indicate insignificant overall market timing 

ability and the point estimates of both components of timing ability are individually 

insignificant.  This is consistent with conditional performance evaluation  studies such as 

Ferson and Schadt (1996) and Becker et al. (1999).   Moving to a conditional version of the 

CAPM removes any evidence of negative timing ability.   The combined ability is reliably 

small.   For example, for the Asset Allocation funds a two-standard error confidence band 

covers (-3, +9) basis points per quarter.  We find similar results when we further break each 

group of funds into thirds on the basis of their expense ratios, turnover, size or age (these 

results are not tabulated).    

 We also examine a conditional asset allocation model with two factors: the market 

index and the bond index, similar to Table 2.   There is less evidence of time-varying SDF 

                                                                                                                                              

nonlinear models do not deliver any significant results. 
8 We do not allow the components of ability to vary over time in this draft, focusing on the 
expected conditional alphas.  It might be interesting to allow for time varying conditional 
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coefficients in this model, consistent with the less-significant b coefficients in Table 2.   The 

overall flavor of the results is similar to that of the market timing example.  We find no 

significant negative level timing in the conditional version of the asset allocation model.  

The sum of the two components of timing ability is insignificant and numerically small. 

 In Table 6 we estimate a conditional version of the FF3 factor model and examine all 

three components of performance using the Thompson holdings data.  The b-parameters 

for the market index are significantly-related to the lagged dividend yield, Tbill yield and 

Default spread, and we would also reject the hypothesis that the b-coefficient for the SMB 

factor is constant over time.  The intercept and HML coefficients are not significantly time 

varying.   The performance results indicate that the combined timing ability, considering 

both level and volatility timing, is small and positive but insignificant at the fund group 

level.  The selectivity component is also insignificant.  When we break each group of funds 

into thirds on the basis of their expense ratios, turnover, size or age we find similar results 

spread across virtually all of the groups.  

 We also estimate a conditional version of the Carhart 4-factor model.   The b-

parameter for the market index is significantly-related to the lagged dividend yield and 

Tbill yield, but none of the other b-coefficients nor the a coefficient are significantly time 

varying.  The combined timing ability is numerically close to zero and statistically 

insignificant.  The selectivity component and total alpha are also insignificant.  When we 

break each group of funds into thirds on the basis of their expense ratios, turnover, size or 

age we find similar results spread across virtually all of the groups. 

    In summary, the conditional models confirm previous evidence, using other 

                                                                                                                                              

alphas along the lines of Christopherson et al. (1998). 
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approaches.  Allowing for both level and volatility timing behavior, the evidence for 

selectivity ability and positive overall performance is nil at the aggregate group levels.   The 

economic magnitude of the performance is also reliably small.   

 

4.5. Sorting Funds on Characteristics 

 It may not be surprising to find no significant performance at the level of large 

groups of funds, but there may be some individual funds with significant performance.  

Previous studies have identified fund characteristics associated with differences in 

performance using other performance measures.   We consider several characteristics in 

this section.   These include the expense ratio, turnover, active share, return gap and factor 

model regression R-squares.  The results are summarized in tables 7 and 8.   We include for 

comparison purposes, the “characteristic selectivity” measure from Daniel, Grinblatt, 

Titman and Wermers (1997), which is the first term of our Equation (10), and denoted as 

DGTWcs. 

 In panel A of Table 7 we sort funds into equally-weighted quintiles according to 

their most recently reported expense ratios.   Consistent with previous studies, the 

DGTWcs measures are positive, with t-ratios larger than 1.9 for four of the five quintiles.   

The measures are higher for the higher expense ratio funds, attaining about 1% per year for 

the highest expense ratio group, but the difference across the quintiles is not statistically 

significant.  Grinblatt and  Titman (1993), Wermers (2000) and others find positive DGTWcs 

measures and suggest that US equity funds have positive selectivity ability on a before cost 

basis.  Our new measures produce a different result.  The combined performance alphas are 

positive, but less than 10 basis points per quarter for each group and the t-ratios are small.   
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In fact, all the components of performance, including the selectivity measures, are small 

and insignificant.   The patterns suggest that the DGTWcs measures are likely biased by the 

omission of the other components.  Six of the ten point estimates of timing ability are 

negative, and these combine with the selectivity components to produce small alphas in our 

models. 

 Amihud and Goyenko (2011) find that when funds are sorted according to the 

regression R-squares of the returns on standard factor models, the funds with lower R-

squares have higher subsequent performance.  Panel B of Table 7 sorts funds in this way 

and examines our measures along with the DGTWcs measure.   Here we find our strongest 

evidence of ability.  Consistent with Amihud and Goyenko, the DGTWcs measure is larger 

for the lower R-square funds.  Our selectivity measure also displays this pattern, and with 

economically similar magnitudes.  The difference across the deciles is about 2.2% per year, 

but does not attain statistical significance.  Our overall alpha measures vary substantially 

with the R-squares, ranging from zero to 87 basis points per quarter, and the difference 

between the high and low-R-square group sports a t-ratio over two.  This difference, about 

3.5% per year, is likely economically significant. 

 Cremers and Petajisto (2009) propose an “active share” measure, the mean absolute 

difference between the holdings of a fund and the holdings of the benchmark.   Sorting 

funds on this measure, they find excess returns differ significantly, by about 2.5-3% per 

year across quintiles, and the more active funds deliver higher future returns.  Petajisto 

graciously provides data for the active shares on his web page.  Panel C of Table 7 sorts 

funds by the active shares and examines our performance measures along with the 

DGTWcs measure.   The DGTWcs measures increase with the active shares and the levels 
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are positive, but the differences across the groups are not statistically significant.  Using our 

performance measures we find small and statistically insignificant performance, with no 

clear relation to the active shares.   Both the selectivity measures and the overall alphas are 

precisely close to zero. 

 Cremers and Petajisto (2009) find a negative trend in funds’ active shares over time, 

and suggest that recent data may be influenced by more “closet indexing” among active 

mutual funds.  Kim (2011) finds that the flow-performance relation in mutual funds 

attenuates after the year 2000, which could be related aggregate volatility that renders 

recent performance less informative, or to a trend toward more similar performance in the 

universe of managers.  The earlier studies by Grinblatt and Titman (1993), Wermers (2000) 

and others used data that do not cover the period after 2000.  Perhaps, the evidence for 

investment ability has changed in the more recent data.  In Table 8 we repeat some of the 

analyses from Table 7, using the restricted 1984-1999 sample period.  We also include 

analyses where we sort funds on return gap and turnover. We use daily fund returns to 

estimate the factor model R-squares.  Since CRSP daily fund return data starts from 1999, 

we do not include the R-square measure in Table 8. 

 In panel A of Table 8 funds are sorted into deciles on the basis of their most recently-

reported expense ratios, and the findings are similar to those in Table 7.  In Panel B we sort 

funds on their active shares and the results are similar to those in Table 7, except our 

overall alpha estimates produce negative t-ratios larger than two in a couple of cases.  Thus, 

we find no evidence that the findings of no performance using our measures are driven by 

the post 2000 data. 

  Kacperczyk, Sialm and Zheng (2007) find that sorting funds by their lagged one-year 
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“return gap,” defined as the difference between the reported, after cost return and the 

hypothetical holdings-based return, can predict subsequent performance using several 

performance measures.    Sorting by return gap in Panel C of Table 8, the DGTWcs 

measures are again positive and many appear statistically significant, but there are no clear 

patterns across the deciles.  Using our performance measures we find marginally significant 

positive ability in a few cases, but no significant relation of performance to the return gap.9 

 Wermers (2000) finds finds a positive relation between turnover and a fund’s 

DGTWcs measure.   We sort our sample of funds into quintiles based on turnover each year 

and estimate our models on each quintile portfolio.   We find in Panel D of Table 8 like 

Wermers, that the DGTWcs measure is higher for the higher turnover groups.  The 

differences are marginally statistically significant.  However, using our measures on either 

the Fama-French three-factor or the Carhart four-factor benchmarks, we find no significant 

relation of any performance measure to the turnover group.  The overall alphas are 

economically small and precisely close to zero. 

 

4.6 Precision and Power 

 Our findings of no significant performance naturally raise the question of statistical 

power.   We are working on simulations to address that issue.  However, it seems that the 

precision of the estimates is high, suggesting that we would have detected economically 

                                           
9 The original Kacperczyk et al. (2007) return gap data are available on the RFS web site.  We redo 

the analysis from 1984-2006 using these to sort the funds.  We find that half of the DGTWcs 

measures for the deciles sport t-ratios larger than two and the measures range from 10 to 33 basis 

points per quarter but the difference between the highest and lowest return gap decile is not 

statistically significant.  Our selectivity measures have a similar range and two of the t-ratios are 

lager than two.  The only marginally statistically significant difference between the high and low 

return-gap deciles is for volatility timing, with a t-ratio of 1.9. 
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significant performance if it existed.   For example, in tables 3-6 the average standard error 

of the alpha estimates is about 36 basis points per year, so performance of 1% per year 

would earn a t-ratio of about three.10   The small t-ratios correspond to point estimates of 

performance that are economically small. 

  

4.7. Additional Tests 

 We conduct some additional experiments to replicate some of the earlier work that 

found positive performance using weight-based performance measures.  Grinblatt and 

Titman (1993) and DGTW (1997) study the persistence in their measures.  We sort funds on 

the basis of previous estimates of each of our three components of performance each 

quarter.  These estimates use the previous two years of data.   This is a short sample for 

estimation, no doubt resulting in noisy estimates, but if we require that a fund survive for a 

longer period, the survival selection induced bias can create spurious persistence (e.g. 

Brown et al. 1992).  We find no evidence of persistence in any of our measures. 

 Studies such as Ferson and Qian (2004),  Moskowitz (2000), Kowsowski (2011), 

Glode (2010) and Kacperczyk, Nieuwerburgh and Veldcamp (2011) suggest that fund 

performance may vary over the state of the business cycle, possibly with stronger 

performance in recession periods.  However, DeSouza and Lynch (2011) criticize some of 

these studies for using NBER reference cycles, which are only available ex post, to condition 

the analysis.   They find that the evidence for business cycle variation in performance 

weakens substantially or disappears when ex ante conditioning variables are used.  We 

estimate a probit model for the likelihood of a recession and break the sample up into high, 

                                           
10 This is much more precision than is available with returns-based alphas, which are typically on the 



 27

medium and low recession probability subsamples.  While we find a higher incidence of t-

ratios above 2.0 that would be expected by chance in the recession-state-conditioned 

performance measures (nine out of 45 cases), but there is no clear pattern in their incidence.  

 

5. Conclusions 

 To measure the total investment performance of a portfolio manager who may 

engage in market timing, it is necessary to consider both level and volatility timing 

behavior as well as selectivity ability.  This paper develops and implements simple 

measures of performance that account for all three components and shows that a well-

specified measure of total performance is a weighted sum of the three components.  

Estimating the measures on US mutual funds, we find some evidence consistent with 

previous studies, such as weak negative market level timing and weak positive volatility 

timing, when some of the terms are omitted from the model as they were in earlier studies. 

 But, when all three terms are present we find virtually no evidence of ability at the fund 

group level or for individual funds sorted according to various fund characteristics that 

previous research has found to be related to performance.   The exception is the regression 

R-squared from regressing the funds’ returns on common factors, where we confirm a 

finding from Amihud and Goyenko (2011) that the low R-square funds have stronger 

performance.   With this exception, our results seem to confirm the results of recent studies 

such as Fama and French (2011) there is little evidence of ability.  The results also suggest 

that Busse’s (1999) finding of volatility timing behavior is not robust, and that previous 

studies finding ability using weight based measures may have been biased by omitted 

                                                                                                                                              

order of 25 basis points per month. 
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variables.  If funds’ investment ability is convincingly neutral on a before cost basis, it 

would suggest that investors are wasting money roughly equal to the costs of fund 

management, calculated by French (2008) to be about 2/3 of one percent per year. 
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Table 1 
Components of Performance in a Market Timing Setting 

 
This table summarizes results when the unconditional CAPM defines the benchmark, using 
CRSP data on mutual funds’ weights in stock.  The sample covers January of 1984 through 
December of 2010. The GMM with a Newey-West lag of three is used for estimation.  Level 
timing is the estimate of αm, volatility timing is the estimate of ασ and their sum represents 
the total market timing performance.  NObs is the number of time series observations of the 
fund group used for the estimation.  Panel A reports GMM estimates of a and b in the 
system (11).   
 
Panel A:   
Estimates of the Market-wide Parameters: 
 

     NObs           a           b   

  Est 108 1.033 2.43  

    t_stat   23.73 1.82   
Panel B:  
Performance 

 
             Level  

           Timing 
     Volatility 

  Timing 
         Sum 

AssetAllocation   Est 33 0.0004 0.0002 0.0006 

 
t_stat  1.2743 1.2986 1.8123 

 
Balanced  Est 36 -2E-04 -1E-04 -0.0002 

 
t_stat  -0.353 -0.27 -0.5473 

 
USEquity  Est 55 -7E-04 0.0001 -0.0005 

  t_stat   -1.456 0.3683 -1.0373 
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                                                                           Table 2 
                          Components of Performance in an Asset Allocation Setting 
 
This table summarizes results for asset allocation performance in a two-factor setting, 
where the stock market index and a bond index are the benchmarks, using CRSP data on 
mutual funds’ asset allocation weights in stocks and bonds.  The bond index is the  Barclays 
US Aggregate bond index and the stock market index is the CRSP value-weighted market 
index.  The sample covers January of 1984 through December of  2010.  The GMM with a 
Newey-West lag of three is used for estimation.  Level timing is the estimate of αm, 
volatility timing is the estimate of ασ and their sum represents the total asset allocation 
performance.  NObs is the number of time series observations of the fund group used for 
the estimation.  Panel A reports GMM estimates of a and b in the system (11).   
 
Panel A:   
Estimates of the Market-wide Parameters: 

     Nobs a b1(mkt) b2(bond) 

  Est 108 1.19 2.47 16.76 

    
t_sta

t   14.26 2.17 3.82 
Panel B:  
Performance 

 
     Level   

  Timing 
Volatiliy 
  Timing 

   Sum 

AssetAllocation   Est 33 -7E-04 0.0008 0.0001 

 
t_sta

t 
 -1.236 1.6648 0.1159 

 
Balanced  Est 36 -4E-04 0.0004 0 

 
t_sta

t 
 -0.79 2.0189 -0.008 

 
USEquity  Est 55 -0.002 0.0009 -7E-04 

  
t_sta

t 
  -1.583 1.3533 -0.954 
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Table 3  
                   Selectivity and Components of Timing Ability in a Three-Factor Model 
 
This table reports estimate of alpha and its decomposition into market timing, volatility 
timing, and selectivity.   The FF 3 factors define the benchmark.  The sample covers January 
of  1984 through December of 2010.  The GMM with a Newey-West covariance matrix with 
three lags is used for estimation. Level timing is the estimate of αm, volatility timing is the 
estimate of ασ  and selectivity is the estimate of αs.   Total fund alpha is the sum of the 
components.  NObs is the number of the time series observations of the fund group used 
for the estimation.   Panel A reports the GMM estimates of a and b. 

 
Panel A:   
Estimates of the Market-wide Parameters: 

 
   Nobs a b1(mkt) b2(smb) b3(hml)  

    est  108 1.05 2.73 -0.29 1.85   

    
t_sta

t   18.59 1.42 -0.11 1.11   
Panel B:  
Performance 

    Level 
Timing 

Volatility 
Timing 

Combined 
Timing 

Selectivity Total 
Alpha 

AssetAllocation   est 71 -0.001 0.0003 -6E-04 0.0007 0.0001 

 
t_sta

t 
 -0.804 0.663 -0.642 0.8703 0.0734 

 
Balanced  est 79 0.0006 0.0002 0.0008 -0.001 -2E-04 

 
t_sta

t 
 0.7611 0.8319 1.229 -1.646 -0.306 

 
USEquity  est 103 -2E-04 0 -2E-04 0.0014 0.0011 

  
t_sta

t 
  -0.152 -0.091 -0.227 1.0886 0.7523 
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Table 4 
                   Selectivity and Components of Timing Ability in a Four-Factor Model 
 
This table reports estimate of alpha and its decomposition into market timing, volatility 
timing, and selectivity.   The Carhart 4  factors are the benchmarks.  The sample covers 
January of  1984 through December of 2010.  The GMM with a Newey-West covariance 
matrix with three lags is used for estimation. Level timing is the estimate of αm, volatility 
timing is the estimate of ασ  and selectivity is the estimate of αs.   Total fund alpha is the sum 
of the components.  NObs is the number of the time series observations of the fund group 
used for the estimation.   Panel A reports the GMM estimates of a and b. 
 
Panel A:   
Estimates of the Market-wide Parameters: 
 

            Nobs       a       b1(mkt)      b2(smb)      b3(hml)      b4(umd) 

    est 108 1.26 4.27 3.15 7.26 7.40

    t_stat   8.21 1.87 1.11 2.75 2.7
Panel B:  
Performance 
    Level Timing Volatility 

Timing 
Combined 

Timing 
Selectivity Total Alpha 

AssetAllocation   est 71 -9E-04 0.0001 -8E-04 0.0007 0

 
t_stat  -0.635 0.1534 -0.72 0.8294 -0.03

Balanced  est 79 0.0003 0 0.0003 -6E-04 -2E-04

 
t_stat  0.3158 0.0631 0.4733 -0.844 -0.286

USEquity  est 103 0.0004 -2E-04 0.0002 0.0006 0.0008

  t_stat   0.2688 -0.21 0.2174 0.4008 0.5117
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                                                                           Table 5 
                     Market Timing in a Conditional CAPM    
      

This table reports estimates of market level timing, volatility timing ability and their sum.  

The conditional model assumes that the market wide coefficients in the stochastic discount 

factor are linear functions of the lagged instruments, Z.   The sample period is January of 

1984 through December of 2010 and quarterly data are used.  The coefficients aj and bj, 

j=0,…,4 are reported in the following order:  Intercept, dividend yield, Tbill yield, TERM 

and DEF.  The GMM with a Newey-West covariance matrix with three lags is used in 

estimation. 

 

Panel A:   
Estimates of the Market-wide Parameters: 

     NObs    a0     a1      a2      a3      a4 

  est 108 1.136 8.62 -2.38 0.10 -5.03 

  t_stat  3.3 0.62 -0.39 0.01 -0.34 

          b0 b1    b2    b3    b4 

  est  16.90 1006.45 -333.21 -273.78 -1298.16 

    t_stat   2.12 3.64 -2.81 -1.77 -3.21 
Panel B: 
Performance 

 
   Level 

Timing 
Volatility 
Timing 

Sum 
  

AssetAllocation   est 32 0.0001 0.0002 0.0003     

 
t_stat  0.0982 0.3679 1.3649 

   
Balanced  est 35 -2E-04 0.0002 -1E-04   

 
t_stat  -0.57 0.355 -0.612 

   
USEquity  est 54 -1E-04 0.0003 0.0002   

  t_stat   -0.19 0.8614 1.1805     

 



 36

 

                                                
    Table 6  

                Components of Performance in a Conditional Three-factor Model 
             
This table reports estimates of market level timing, volatility timing ability, selectivity and 

their sum.  The reduced-form model assumes that the market wide coefficients in the 

stochastic discount factor are linear functions of the lagged instruments, Z.   The Fama-

French FF 3 factors are the benchmarks.  The sample period is January of 1984 through 

December of 2010 and quarterly data are used.  The coefficients aj and bj, j=0,…,4 are 

reported in the following order:  Intercept, dividend yield, Tbill yield, TERM and DEF.  The 

GMM with a Newey-West covariance matrix with three lags is used in estimation. 

Panel A:   
Estimates of the Market-wide Parameters: 

 
     Nobs a0 a1 a2 a3 a4 

    est 108 -0.13 -14.97 11.44 23.95 89.28 

    t_stat   -0.18 -0.59 1.05 1.42 1.51 

  b(mkt)     b0 b1 b2 b3 b4 

  est  17.38 1841.23 -416.64 -438.311 -2351.37 

    t_stat   1.53 4.45 -2.46 -1.54 -3.34 

  b(smb)     b0 b1 b2 b3 b4 

  est  0.97 -825.54 -290.55 406.70 2008.59 

    t_stat   0.07 -1.84 -1.2 1.27 1.97 

  b(hml)     b0 b1 b2 b3 b4 

  est  -25.26 549.62 236.41 315.51 -513.38 

    t_stat   -1.47 1.17 1.12 0.81 -0.85 
Panel B:  
Performance 

   Nobs Level 
Timing 

Volatility 
Timing 

Combined 
Timing 

Selectivity Sum 

AssetAllocation   est 71 0.0007 -6E-04 0.0002 0.0011 0.0013 

 t_stat  0.3804 -0.381 0.1525 1.3238 1.2003 

Balanced  est 79 0.0024 -0.002 0.0009 -6E-04 0.0003 

 t_stat  1.3474 -1.07 1.5119 -1.006 0.4848 

USEquity  est 103 -3E-04 0.0004 0.0001 0.0014 0.0015 

  t_stat   -0.24 0.4032 0.1569 1.2613 1.0427 
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                                                                 Table 7 

 

        Performance of individual funds, sorting on various predetermined fund characteristics.   

 
This table reports estimate of alpha and its decomposition into market timing, volatility 
timing, and selectivity.   The Carhart 4  factors define the benchmark.  The sample covers 
January of  1984 through December of 2010.  The GMM with a Newey-West covariance 
matrix with three lags is used for estimation.  DGTWcs is the characteristic selectivity 
measure of Daniel, Grinblatt, Titman and Wermers (1997). 
 

Panel A     Sorting on Expense ratios    

           

  

Nobs Level 
Timing 

Volatility 
Timing 

Combined 
Timing 

Selectivity Total 
Alpha 

DGTWcs 

quintle 
1 

(lowest) 

est 103 0 -7E-04 -7E-04 0.0016 0.0009     0.0013 

tstat  -0.02 -0.71 -0.88 1.51 0.77 2.22 
 

quintle 
2 

est 103 0.0006 -2E-04 0.0003 0.0006 0.001 0.0014 

tstat  0.34 -0.20 0.35 0.61 0.66 1.90 
 

quintle 
3 

est 103 0.0009 -7E-04 0.0002 0.0002 0.0004 0.0016 

tstat  0.53 -0.63 0.18 0.12 0.25 2.08 
 

quintle 
4 

est 103 0.0002 -6E-04 -4E-04 0.0006 0.0002 0.0015 

tstat  0.13 -0.50 -0.24 0.34 0.16 1.69 
 

quintle 
5 

(highest) 

est 103 0.0006 -3E-04 0.0003 0.0001 0.0004 0.0025 

tstat   0.37 -0.34 0.24 0.06 0.28 1.96 

quintle 
5 - 

quintle 
1 

est 103 0.0006 0.0004 0.001 -0.002 -4E-04 0.0012 

tstat  0.44 0.55 0.88 -1.21 -0.43 1.14 

           

Panel B     Sorting on R-squares     

           

  
Nobs Level 

Timing 
Volatility 
Timing 

Combined 
Timing 

Selectivity Total 
Alpha 

DGTWcs 

decile 1 
(lowest) 

est 46 0.0042 -0.001 0.0033 0.0055 0.0087 0.0032 

 tstat  0.87 -0.23 1.10 1.51 1.97 1.39 
 

decile 2 est 46 0.0051 -0.002 0.0031 0.0044 0.0074 0.0032 

 tstat  0.80 -0.36 0.88 1.22 1.59 1.33 
 

decile 3 est 46 0.0047 -0.001 0.0036 0.0036 0.0072 0.003 

 tstat  0.82 -0.23 1.16 1.16 1.72 1.24 
 

decile 4 est 46 0.0045 -0.002 0.0029 0.0025 0.0054 0.0014 

 tstat  1.23 -0.52 1.35 0.91 1.56 0.69 
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decile 5 est 46 0.0033 -0.001 0.0022 0.0025 0.0047 0.0026 

 tstat  1.45 -0.77 1.27 1.12 1.54 1.19 
 

decile 6 est 46 -2E-04 0 -2E-04 0.0016 0.0014 0.0021 

 tstat  -0.14 0.03 -0.17 1.17 0.82 0.90 
 

decile 7 est 46 -0.001 0.0014 0.0001 0.0016 0.0017 0.0019 

 tstat  -0.47 0.76 0.06 1.45 1.11 0.97 
 

decile 8 est 46 -0.001 0.0017 0.0006 0.0007 0.0013 0.0014 

 tstat  -0.52 1.11 0.39 0.58 0.90 0.80 
 

decile 9 est 46 -7E-04 0.0012 0.0005 0.0001 0.0006 0.0012 

 tstat  -0.25 0.71 0.19 0.07 0.44 0.76 
 

decile 10 
(highest) 

est 46 -3E-04 0.0004 0 -5E-04 -5E-04 0.0002 

  tstat   -0.10 0.18 0.01 -0.23 -0.34 0.23 

decile 
10- 

decile1 

est 46 -0.005 0.0014 -0.003 -0.006 -0.009 -0.003 

 tstat  -0.71 0.33 -0.67 -1.23 -2.06 -1.28 

         

Panel C     Sorting on Active Shares 

         

  

Nobs Level 
Timing 

Volatility 
Timing 

Combined 
Timing 

Selectivity Total 
Alpha 

DGTWcs 

quintle 
1 

(lowest) 

est 68 0.0039 -0.002 0.0015 0.0004 0.001
8 

0.0014 

tstat  1.79 -1.49 1.33 0.29 1.77 1.87 
 

quintle 
2 

est 68 0.0023 -0.003 -4E-04 0.0008 0.000
4 

0.0026 

tstat  1.10 -1.68 -0.43 0.59 0.35 1.75 
 

quintle 
3 

est 68 -7E-04 -7E-04 -0.001 0.001 -4E-
04 

0.0023 

tstat  -0.20 -0.22 -0.84 0.61 -0.21 1.54 
 

quintle 
4 

est 68 0.0001 -9E-04 -8E-04 -8E-04 -0.002 0.0022 

tstat  0.02 -0.32 -0.36 -0.37 -0.69 1.10 
 

quintle 
5 

(highest) 

est 68 -0.001 -9E-04 -0.002 0.0001 -0.002 0.0029 

tstat   -0.25 -0.25 -0.83 0.06 -0.58 2.02 

quintle 
5 - 

quintle 
1 

est 68 -0.005 0.0016 -0.004 -2E-04 -0.004 0.0014 

tstat  -1.19 0.45 -1.39 -0.09 -1.22 1.06 

 



 39

 

                                                                Table 8: 

 

         Performance of individual funds, sorting on various predetermined fund characteristics.   

 

This table replicates Table 7, restricting the analysis to (1984:01-1999:12). This table reports 
estimate of alpha and its decomposition into market timing, volatility timing, and 
selectivity.   The Carhart 4  factors are the benchmarks.  The sample covers January of  1984 
through December of 2010.  The GMM with a Newey-West covariance matrix with three 
lags is used for estimation.  DGTWcs is the characteristic selectivity measure of Daniel, 
Grinblatt, Titman and Wermers (1997). 
 

Panel A     
Sorting on Expense ratios 
    

  

Nobs Level 
Timing 

Volatility 
Timing 

Combined 
Timing 

Selectivity Total 
Alpha 

DGT
Wcs 

decile 1 
(lowest) 

est 60 -5E-04 -9E-04 -0.001 0.0022 0.0008 0.0022 

 tstat  -0.27 -1.119 -0.991 2.0342 0.7544 3.4799 

decile 2 est 60 -6E-04 -8E-04 -0.001 0.0019 0.0005 0.0006 

 tstat  -0.262 -0.596 -0.767 1.1491 0.4761 0.7944 

decile 3 est 60 -0.001 0.0011 -3E-04 0.0009 0.0005 0.0018 

 tstat  -0.658 0.6742 -0.232 0.6535 0.3387 1.9482 

decile 4 est 60 -6E-04 0.0005 -1E-04 0.0018 0.0017 0.0012 

 tstat  -0.289 0.3604 -0.078 1.4021 1.3527 1.1475 

decile 5 est 60 -9E-04 -4E-04 -0.001 0.0012 -1E-04 0.0021 

 tstat  -0.425 -0.289 -0.71 0.8141 -0.066 1.928 

decile 6 est 60 -0.003 0.0001 -0.003 0.0021 -6E-04 0.0017 

 tstat  -1.082 0.0713 -1.776 1.1359 -0.319 1.9687 

decile 7 est 60 -0.003 -0.001 -0.004 0.0026 -9E-04 0.0026 

 tstat  -0.994 -0.495 -1.638 0.9709 -0.565 2.7159 

decile 8 est 60 -0.004 0.0005 -0.003 0.0024 -8E-04 0.0014 

 tstat  -1.936 0.3323 -1.874 1.0917 -0.585 0.9808 

decile 9 est 60 -0.001 -0.001 -0.002 0.0023 0.0004 0.0039 

 tstat  -0.503 -0.74 -1.194 1.2596 0.2316 2.6309 

decile 10 
(highest) 

est 60 -0.002 0.0009 -7E-04 0.0027 0.002 0.0041 

  tstat   -0.785 0.9286 -0.479 1.5912 1.3438 2.274 

decile 
10- 

decile1 

est 60 -0.001 0.0019 0.0007 0.0004 0.0012 0.0019 

 tstat  -0.431 1.5264 0.423 0.3091 0.7295 1.2385 
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Panel B     Sorting on Active Share 

        

  

Nobs Level 
Timing 

Volatility 
Timing 

Combined Timing Selectivity Total 
Alpha 

DGTWcs 

decile 1 
(lowest) 

est 39 0.0038 -0.003 0.0006 0.0006 0.0012 0.0021 

 tstat  1.6271 -1.173 0.4247 0.3253 1.1277 2.4054 

decile 2 est 39 0.0015 -0.001 0.0004 -6E-04 -2E-04 0.0024 

 tstat  0.7228 -0.715 0.2495 -0.294 -0.132 1.7585 

decile 3 est 39 0.0005 -7E-04 -3E-04 0.0004 0.0001 0.0035 

 tstat  0.1775 -0.396 -0.183 0.2276 0.0811 2.1718 

decile 4 est 39 0.0028 -0.003 -3E-04 0.0003 0 0.0041 

 tstat  0.9732 -1.014 -0.165 0.125 -0.003 1.7418 

decile 5 est 39 -8E-04 0.0003 -5E-04 -3E-04 -8E-04 0.0032 

 tstat  -0.207 0.1195 -0.238 -0.154 -0.472 1.8402 

decile 6 est 39 -0.007 0.0059 -7E-04 -0.002 -0.003 0.0018 

 tstat  -1.044 1.0335 -0.217 -0.936 -1.992 0.9458 

decile 7 est 39 0.0017 0.0019 0.0035 -0.005 -0.002 0.0043 

 tstat  0.2874 0.393 1.0446 -1.483 -0.581 1.7256 

decile 8 est 39 -0.005 0.0025 -0.002 -0.003 -0.006 0.0036 

 tstat  -0.806 0.4564 -0.621 -1.1 -2.24 1.3062 

decile 9 est 39 -0.003 0.0029 0 -0.004 -0.004 0.0044 

 tstat  -0.494 0.5779 0.0011 -1.326 -1.629 2.1505 

decile 10 
(highest) 

est 39 -0.009 0.0062 -0.002 0.0007 -0.002 0.0021 

  tstat   -1.272 0.9216 -0.759 0.3323 -0.549 1.0252 

decile 10- 
decile1 

est 39 -0.012 0.0093 -0.003 0.0001 -0.003 0 

 tstat  -1.456 1.0524 -0.738 0.024 -0.95 -0.003 

        

        

Panel C     Sorting on Return Gap  

        

  

Nobs Level 
Timing 

Volatility 
Timing 

Combined Timing Selectivity Total 
Alpha 

DGTWcs 

decile 1 
(lowest) 

est 59 0.0041 0.001 0.0051 0.0002 0.0053 0.0027 

 tstat  1.3988 0.5575 1.8776 0.145 2.0506 1.4211 

decile 2 est 59 -4E-04 0.0013 0.0009 0.0014 0.0024 0.0025 

 tstat  -0.144 0.8075 0.3322 1.2027 0.8383 1.9754 

decile 3 est 59 -0.004 -3E-04 -0.004 0.0036 -4E-04 0.0017 

 tstat  -1.769 -0.209 -2.418 2.229 -0.342 1.8972 
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decile 4 est 59 0.0009 -8E-04 0 0.0011 0.0012 0.0015 

 tstat  0.5346 -0.702 0.0356 0.7756 0.9781 1.7978 

decile 5 est 59 -0.002 -0.001 -0.003 0.002 -0.001 0.0021 

 tstat  -0.98 -1.044 -2.357 1.5405 -0.787 2.1174 

decile 6 est 59 -0.003 0.0011 -0.002 0.0025 0.0004 0.0013 

 tstat  -1.369 0.5171 -1.227 1.4787 0.2968 1.3189 

decile 7 est 59 -0.004 0.0002 -0.004 0.0023 -0.001 0.0026 

 tstat  -1.318 0.083 -1.702 1.4458 -0.813 3.1814 

decile 8 est 59 -0.001 -0.001 -0.003 0.0023 -4E-04 0.0021 

 tstat  -0.618 -0.643 -1.409 1.6609 -0.217 2.1 

decile 9 est 59 -0.003 -0.001 -0.005 0.0034 -0.001 0.0029 

 tstat  -1.466 -0.628 -2.688 1.8845 -0.593 2.494 

decile 10 
(highest) 

est 59 -0.003 0.0008 -0.002 0.0011 -0.001 0.003 

  tstat   -0.922 0.4347 -0.742 0.4289 -0.331 1.2691 

decile 10- 
decile1 

est 59 -0.007 -1E-04 -0.007 0.0009 -0.006 0.0002 

 tstat  -1.829 -0.055 -2.156 0.3793 -1.42 0.1184 

        

Panel D     Sorting on Turnover as in Wermers(2000) 

        

  
Nobs Level 

Timing 
Volatility 
Timing 

Combined Timing Selectivity Total 
Alpha 

DGTWcs 

quintle 1 
(lowest) 

est 52 -0.005 0.002 -0.003 0.0021 -5E-04 -0.001 

t_stat  -1.489 0.8043 -1.114 1.6113 -0.302 -0.506 

quintle 2 est 52 -0.001 -0.001 -0.002 0.0017 -4E-04 0.0009 

t_stat  -0.396 -0.589 -1.34 0.864 -0.26 0.3603 

quintle 3 est 52 -0.007 0.0032 -0.004 0.0017 -0.002 -6E-04 

t_stat  -1.727 1.0113 -1.25 0.8779 -0.654 -0.286 

quintle 4 est 52 -0.003 -0.004 -0.006 0.0039 -0.003 0.0031 

t_stat  -1.011 -1.364 -3.694 1.9764 -1.202 2.7353 

quintle 5 
(highest) 

est 52 -0.002 -5E-04 -0.002 0.0037 0.0015 0.006 

t_stat   -0.637 -0.22 -1.165 1.3585 0.5711 2.1898 

quintle 5 - 
quintle 1 

est 52 0.0029 -0.002 0.0005 0.0015 0.002 0.0071 

t_stat  0.9126 -0.824 0.1694 0.5928 0.5729 1.9623 

 


