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Abstract 

 

The research of modeling asset return dependence has become an indispensable element of 

wealth management, particularly after periods of economic downturn. In this paper, we 

evaluate the performance of time-varying copula-based portfolios and the variables that are 

associated with the disparity between conditional and unconditional correlations. Using daily 

data of G-7 countries, our empirical findings suggest that portfolios using time-varying 

copulas, particularly Clayton-dependence copula, outperform those constructed with Pearson 

correlations. The above results hold under different weight updating strategies and portfolio 

rebalancing frequencies. When equity market risk, fixed-income market risks, and currency 

risk are high, the copula-based dependence statistically differ from the unconditional 

correlations. Our findings suggest the need of copula-based models in portfolio management, 

especially during economic recessions. 
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1.  Introduction 

How to adequately assess the comovement structures of asset returns is a key issue to 

consider when constructing an optimally-investing portfolio.
1
 Over the past decade, copula 

modeling has become a popular alternative to unconditional Pearson correlation for 

describing data with an asymptotic dependence structure and a non-Gaussian distribution.
2
 

However, several critical issues related to the applications of copulas emerge: Do portfolios 

using time-varying copulas outperform those constructed with Pearson correlations? How 

does the risk-return of copula-based portfolios change throughout in a business cycle? How 

do market risks affect the deviation from conditional correlations to unconditional ones? 

Mostly recently, the estimation of parameters in constructing optimal portfolio strategies has 

become a particularly critical practice for finance academics and professionals in the financial 

crises. In this paper, we evaluate the performance of time-varying copula-based portfolios and 

the variables that explain the variation between conditional and unconditional correlations.  

This paper extends the existing literature in three ways. First, we thoroughly analyze 

various copulas in portfolio optimization while considering different trading and economic 

scenarios. Differing from the regime-switching type in Rodriguez (2007) and Okimoto (2008) 

or the time-evolving type GARCH model in Patton (2006a), we estimate time-varying 

copulas with a rolling window based on daily data gathered from a previous year.
3
 It is well 

accepted that the correlations between asset returns are time-varying (Kroner and Ng, 1998; 

Ang and Bekaert, 2002). The rolling window method allows us to generate a significant 

                                                 
1
 For a detailed discussion, see Bauer and Vorkink (2011); Chan, Karceski, and Lakonishok (1999); Engle and 

Sheppardy (2008); Jagannathan and Ma (2003). 
2
 See Chollete, Heinen, and Valdesogo (2009); Dowd (2005); Patton (2006a). 

3
 To capture this characteristic, a copula can be designed to vary its functional form through time, as shown with 

a regime switching type in Rodriguez (2007) and Okimoto (2008), or to evolve its dependence parameter 

through time, as shown by the GARCH model in Patton (2006a). Both of these methods use the full sample 

period to calibrate the dependence. 
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amount of observations. This is a method frequently adopted by practitioners and, therefore, 

is more applicable to Wall Street than the regime-switching and the time-evolving models. 

Furthermore, the rolling window method considers only the past year’s information when 

forming dependencies, thus avoiding disturbances that may have existed in the distant past. 

To our knowledge, only Aussenegg and Cech (2009) use a setting similar to ours. However, 

Aussenegg and Cech (2009) only consider daily Gaussian and Student’s t-copulas in 

constructing their models, and it is reasonable to consider monthly and quarterly frequencies 

because portfolio managers do not adjust their portfolios on a daily basis. Our research also 

extends Aussenegg and Cech’s (2009) study by including the extreme value-based copulas, 

which are designed to capture tail dependence. This paper provides a robust conclusion 

regarding the application of copulas in risk management.  

Second, our study investigates how the choice of copula functions affects portfolio 

performance during periods of economic expansion and recession. The expansion and 

recession periods that we define are based on the National Bureau of Economic Research 

(NBER).  While the study of the use of copula functions has grown immensely, little work 

has been done in comparing copula dependences under different economic conditions. 

Third, our paper provides insight regarding the impact of risks on the difference 

between the Pearson correlation and the corresponding copula estimates. The previous studies 

(e.g., Ang and Chen, 2002; Boyer, Gibson, and Loretan, 1999; Kolari, Moorman, and 

Sorescu, 2008; Longin and Solnik, 2001; and Tastan, 2006) have documented that the 

unconditional correlation can be biased due to the properties of non-normality such as fat-tail 

and excessive skewness. The bias challenges conventional portfolio optimization strategies, in 

which correlations are estimated using the Pearson product-moment correlation coefficient or 
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Gaussian-based copula methods. Yet how equity market volatility, maturity risk, default risk, 

and currency risk affect the difference between conditional and unconditional estimations is 

not clear. Such an analysis is useful for risk managers in evaluating the effect of various 

systemic risks on correlation and in calibrating possible bias in risk management. 

A copula is a function that links marginal distributions together to form a multivariate 

distribution. According to Sklar’s Theorem, a unique copula exists for a joint distribution 

with continuous marginal distribution functions. Therefore, a joint distribution can be divided 

into (1) the marginal distributions that describe the behavior of each asset, and (2) the copula 

function that reveals the interaction between the assets. The flexibility of copula modeling 

comes from the copulas being measured independently from marginal distributions and from 

their being free from non-normal or asymmetric data.  

We model the time-varying dependence of an international equity portfolio using 

different copula functions and Pearson correlation and construct the minimum-risk portfolios 

based on different copula dependences. The difference in mean-variance between a copula-

based portfolio and the corresponding Pearson portfolio represents the benefits to use copulas. 

We analyze the economic values of copula models by using Ledoit and Wolf’s (2008) 

studentized time series bootstrap method with various balancing frequencies in different sub-

periods. We next evaluate how various market risks affect the deviation between the 

unconditional correlation and copula-based estimations. 

Using daily U.S. dollar-denominated Morgan Stanley Capital International (MSCI) 

indices of G-7 countries, our empirical results suggest that the copula-dependence portfolios 

outperform the Pearson-correlation portfolios. For most scenarios studied, the Clayton-

dependence portfolios deliver the highest portfolio returns, indicating the importance of 
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lower-tail dependence in building an international equity portfolio. Moreover, the choice of 

weight updating frequency matters. As we increase the weight updating frequency from 

quarterly to monthly, the portfolio returns for the full sample and recession periods also 

increase, regardless of the choice of dependence measures. Our finding supports the value of 

active portfolio reconstruction during periods of recession. The high departures between 

conditional and unconditional correlations are statistically significant associated with high 

risks in equity market, fixed-income market, and currency market. This suggests the need of 

copula-based models in portfolio management, especially during economic recessions. 

This paper is organized as follows. Section 2 reviews the literature on copula 

applications in portfolio modeling. Section 3 describes the empirical models. Section 4 

presents the data used. The main empirical results are reported in Section 5. Section 6 

evaluates how the risks in financial market affect the size of departure of unconditional 

correlation from copula-based estimations.  Section 7 concludes. 

 

 

2.  Literature Review 

Copulas, implemented in either a static or time-varying  framework, are frequently  applied in 

options pricing, risk management, and portfolio selection. In this section, we review some 

areas of portfolio selection in which copulas can be used/applied.  

          Hu (2006) adopts a mixture of a Gaussian copula, a Gumbel copula, and a Gumbel 

survival copula to examine the various dependence structures of four stock indices. His 

results demonstrate the underestimation problem due to multivariate normality correlations as 

well as the importance of incorporating both the structure and the degree of dependence into 

the portfolio evaluation. Kole, Koedijk, and Verbeek (2007) compare the Gaussian, Student’s 



5 

t, and Gumbel copulas to illustrate the importance of selecting an appropriate copula to 

manage the risk of a portfolio that is composed of stocks, bonds, and real estate. Kole et al. 

(2007) empirically demonstrate that the Student’s t-copula, which considers the dependence 

both in the center and the tail of the distribution, provides the best fit for the extreme negative 

returns of the empirical probabilities under consideration. Chollete, Peña, and Lu (2011) 

investigate the benefits of international diversification by using the Pearson correlation and 

six copula functions. Their results show that dependence of asset returns increases over time 

and that the intensity of the asymmetric dependence varies in different regions of the world. 

Patton (2006a) pioneered time-varying copulas by modifying the copula functional form in a 

manner that allows the copula’s parameters to vary. Patton (2006a) uses conditional copulas 

to examine asymmetric dependence in daily Deutsche mark (DM)/US dollar (USD) and 

Japanese yen (Yen)/US dollar (USD) exchange rates. His empirical results suggest that the 

correlation between DM/USD and Yen/USD exchange rates is stronger when the DM and yen 

are depreciating against the dollar. Rodriguez (2007) studies financial contagions in emerging 

markets with switching Frank, Gumbel, Clayton, and Student’s t-copulas. Rodriguez (2007) 

finds evidence that the dependence structures between assets changed during the 1998 and 

2002 financial crises and that a asset allocation strategy  allowing the dependence of returns 

to vary with time perform better than that not allowing. Chollete, Heinen, and Valdesogo 

(2009) model asymmetric dependence in international equity portfolios using a regime-

switching, canonical vine copula approach, which is a branch of the copula family first 

described by Aas, Czado, Frigessi, and Bakken (2007). Chollete, Heinen, and Valdesogo 

(2009) documents that the canonical vine copula provides better portfolio returns and that the 

choice of different copula dependencies affect the value-at-risk (VaR) of the portfolio return.  
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          While some existing studies apply copulas to optimizing portfolio selection, most tend 

to focus on portfolio risks, i.e. value-at-risk, rather than portfolio returns. Empirically, 

however, investors pay at least equal attention to portfolio returns; our study is among the few 

that focus on equity portfolio returns using time-varying copulas. 

 

 

3.  Empirical Methods 
 

3.1  Copulas 

A copula C is a function that links univariate distribution functions into a multivariate 

distribution function. Let F be an n-dimensional joint distribution function, and let U= (u1, u2, 

..., un)
T
 be a vector of n random variables with marginal distributions F1, F2,…, Fn. According 

to Sklar's (1959) theorem, if the marginal distributions F1, F2, …, Fn are continuous, then a 

copula C exists, where C is a multivariate distribution function with all uniform (0,1) 

marginal distributions.
4
 That is, 

 (          )   (  (  )   (  )     (  )), for all                 .                    (1) 

For a bivariate case, the model can be defined as 

 (   )   (  ( )   ( )).          (2)                        

 

3.2 Copula Specifications 

In this paper, we consider four copula functions: the Gaussian, the Student’s t, the Gumbel, 

and the Clayton. The Gaussian copula focuses on the center of the distribution and assumes 

no tail dependence. The Student’s t-copula stresses both the center of the distribution and 

symmetric tail behaviors. Clayton copula emphasizes the lower-tail dependence while 

                                                 
4
 For detailed derivations, please refer to Cherubini et al. (2004), Embrechts et al. (2005), Franke, Hӓrdle, and 

Hafner (2008), and Patton (2009). 
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Gumbel copula focuses on the upper tail dependence. Table 1 summarizes the characteristics 

of each copula in detail. 

 

 [INSERT Table 1 ABOUT HERE] 

 

3.2.1 Gaussian Copula 

 

The Gaussian copula is frequently used in finance literature due to its close relationship to the 

Pearson correlation. It represents the dependence structure of two normal marginal 

distributions. The bivariate Gaussian copula can be expressed as 

 (   )  ∫   
   ( )

  
∫   

   ( )

  

 

  √    
   { 

          

 (    )
}    ( 

  ( )    ( ) ),        (3) 

where Φ denotes the univariate standard normal distribution function, and Φρ is the joint 

distribution function of the bivariate standard normal distribution with a correlation 

coefficient -1≤ ρ ≤1. The Gaussian copula has no tail dependence unless ρ = 1.  

 

3.2.2 Student’s t-Copula 

Unlike the Gaussian copula, which fails to capture tail behaviors, the Student’s t-copula 

depicts the dependence in both center as well as in the tails of the distribution. The Student’s 

t-copula is defined using the multivariate t distribution and can be written as 

    
 (   )  ∫ ∫

 

  √    
{  

          

 (    )
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8 

where     
  indicates the bivariate joint t distribution;   

   is the inverse of the distribution of a 

univariate t distribution; and v is the degrees of freedom. When v > 2, ρ is the correlation 

coefficient of the bivariate t distribution.  

 

3.2.3 Tail-dependence Copulas 

According to Embrechts et al. (2005), the coefficient of the upper tail dependence (λu) of 2 

series X and Y can be defined as:  

  (   )          [    
 ( )     

 ( )]. 

The upper-tail dependence presents the probability that Y exceeds its q-th quantile, given that 

X exceeds its q-th quantile, considering the limit as q goes to its infinity. If the limit λu [0,1] 

exists, then X and Y are said to show upper tail dependence. In the same manner, the 

coefficient of lower tail dependence (λl ) of X and Y is described as: 

  (   )          [    
 ( )     

 ( )]. 

Since both    
 and    

are continuous density functions, the upper tail dependence can be 

presented as: 

      
    

 [    
 ( )     

 ( )]

 [    
 ( )]

  . 

For lower tail dependence, it can be described as; 

      
    

 [    
 ( )     

 ( )]

 [    
 ( )]

  . 

Gumbel Copula 

The Gumbel copula is a popular upper tail dependence measure. Suggested by Embrechts et 

al. (2005), Gumbel copula can be written as 

 (   )     [ {(    ( )
 

  (    ( )
 

 }
 

]      ,                                                                    (5) 
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where 0 < δ ≤ 1 measures the degree of dependence between X and Y. When δ = 1, X and Y do 

not have upper tail dependence (i.e., X and Y are independent at the upper tails). When δ → 0, 

X and Y have perfect dependence. 

Clayton Copula 

The Clayton copula is used to measure lower-tail dependence. The Clayton copula is defined 

as  

 (   )     [(         ) 
 

   ]          ,                                                                  (6) 

where α describes the strength of dependence. If α→ 0, X and Y do not have lower tail 

dependence. If α→ ∞, X and Y have perfect dependence. 

 

3.3 Portfolio Constructions 

The selection of optimal portfolios draws on the seminal work of Markowitz (1952). 

Specifically, we adopt the variance-minimization strategy with no short-selling and with no 

transaction cost assumptions.
5
 The optimal portfolio allocation can be formed by solving the 

following optimization problem: 

   { } 
    

                          ,                                (7), 

where    is the weight of asset i and V is the covariance matrix of the asset returns. Because 

dependence is a time-varying parameter, the data from a subset of 250 trading days prior to 

the given sample date t is used to derive its dependence. With 1,780 daily data points in our 

sample, we calculate a total of 1,531 dependences for each copula method and Pearson 

                                                 
5
 Short-selling usually involves other service fees, which vary depending on the creditability of the investors. 

Because the focus of this study is on the effect of the dependence structure on portfolio performance, we assume 

that short-selling is not allowed to simply the comparison. 
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correlation. With these dependences, optimal portfolio weightings can be obtained by solving 

a quadratic function subject to specified constraints. The optimal weightings for time t are 

used to calculate the realized portfolio returns for t+1.
6
  

          In practice, portfolio managers periodically re-examine and update the optimal weights 

of their portfolios. If the asset allocation of an existing portfolio has deviated from the target 

allocation to a certain degree, and if the benefit of updating exceeds its costs, a portfolio will 

be reconstructed. In this paper, we construct a comprehensive study of portfolio returns by 

varying the state of the economy (i.e., expansion or recession), the dependence structure of 

the portfolio, and the frequency of portfolio weight updating (i.e. quarterly, monthly, and 

daily). Quarterly updating allows investors to rebalance the portfolio weights on the first 

trading days of March, June, September, and December; monthly updating allows investors to 

change the optimal weights on the first trading days of each month. Under daily updating, 

investors rebalance the optimal weights every trading day.  

 

4.  Data 

The data is comprised of the U.S. dollar-denominated daily returns of the Morgan Stanley 

Capital International (MSCI) indices for the G7 countries which include Canada, France, 

Germany, Italy, Japan, the United Kingdom, and the United State. The sample period spans 

the first business day in June 2002 to the last business day in June 2009 for a total of 1,780 

daily observations. Based on the definition provided by the National Bureau of Economic 

Research, we split the data into an expansion period from June 2002 to November 2007 and a 

                                                 
6
 For example, we use return data from t1 to t250 to calculate the optimal portfolio weights with dependences 

estimated from the copulas and the Pearson correlation. The optimal portfolio weights are applied to the return 

data at t251 to calculate the realized portfolio returns. 
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recession period from December 2007 to June 2009. The data of various interest rates and 

exchange rate are obtained from the Federal Reserve.   

          Table 2 presents the summary statistics. Among the G7 countries, Canada have the 

highest daily returns while the US have the lowest. Germany, however, experience the most 

volatile returns. All return series exhibit high kurtosis, suggesting the fat tails behavior.  The 

results of the Jarque-Bera test reject the assumption that the G7 indices have normal 

distributions.  

 

[INSERT Table 2 ABOUT HERE] 

 

 

5. Empirical Results 
 

5.1 Dependence 

Using 1,780 daily data points from the G7 countries, we estimate 21 dependence pairs 

for each dependence model, each containing a sequence of 1,531 dependences. The 

parameters for the Gaussian, Student’s t, Gumbel, and Clayton copula functions are estimated 

using the two-stage inference for the margins (IFM) method proposed by Joe and Xu (1996) 

and Joe (1997). The bivariate joint density function can be represented as follows: 

 (   )   (  (     )   (     )  )  (     )  (     ),     (8) 

where θx are the parameters for the marginal distribution FX , and θy are the parameters for the 

marginal distribution FY, and Θ are the parameters for the copula density c. Therefore, the 

exact log-likelihood function of the above joint density function can be presented as 

 ( )  ∑    (  (     )   (     )  ) 
    ∑ (    (     )      (     )) 

   .  (9) 
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Then, by maximization, we can obtain the exact maximum likelihood estimator as 

 ̂         ( ).          (10) 

According to Joe and Xu (1996) and Joe (1997), the parameters can be estimated by 

an inference for the margins or IFM method. This method includes two steps. First, the 

parameters of the univariate marginal distributions are estimated as: 

  ̂          
∑ (    (     ))

 
   ,        (11) 

and  

  ̂          
∑ (    (     )) 

   .                                       (12)  

    At the second step, given θx and θy, the dependence parameters Θ are estimated as: 

 ̂         ∑    (  (     ̂)   (     ̂)  ) 
   .      (13) 

Appendix A shows the maximum and the minimum of the 21 dependence pairs of each 

dependence model.  

 The graphs in Figure 1 show the dependences between the US and other countries that 

are estimated by various copulas and the Pearson correlation method. In general, the Gaussian 

copula estimation is similar to the corresponding Pearson correlation, but the Student’s t-

copulas show significant jumps over time. For our sample period, Japan shows a low 

dependence with the US market when compared to other countries’ dependence on the U.S. 

economy.  

 

 [INSERT Figure 1 ABOUT HERE] 

 

The differences in correlations between the time-varying copulas and unconditional 

model vary due to economic states. Specifically, the Pearson correlation is higher than the 
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estimates that use fat-tail copulas, i.e., the Clayton and the Gumbel, during two sub-periods: 

2003 to 2004 and 2008 to 2009. In contrast, the copula-based interdependences are higher 

than their corresponding unconditional estimates between 2004 and 2007. In addition, the 

patterns of time-variation are different across countries. Among them, Japan shows the lowest 

degree of comovement with the US equity return.         

 

5.2 Average Portfolio Returns 

Table 3 presents the average portfolio returns for the full sample period, the expansion period, 

and the recession period for the quarterly, monthly, and daily weight updating strategies. For 

the quarterly weight updating, the Clayton-dependence portfolios have the highest average 

returns at 6.07% during the expansions and -12.52% during the recessions; the Pearson-

correlation portfolios have the lowest average returns at 5.48% during the expansions and -

14.25% during the recessions. The order of portfolio performances, listing according to its 

dependence model regardless of the state of economy, is as follows: the Clayton copula, the 

Gumbel copula, the Student’s t-copula, the Gaussian copula, and the Pearson correlation. The 

empirical results of both the Clayton and Gumbel copulas highlight the need to model the tail 

dependence between assets.  Our finding suggests that with a quarterly weighting strategy, tail 

dependence, particularly lower-tail dependence, generate superior average portfolio returns 

across different economic conditions.  

          When we increase the portfolios’ rebalancing frequency from quarterly to monthly, 

similar empirical results are observed. That is, the Clayton-copula portfolios yield the highest 

average returns while the Pearson-correlation portfolios provide the lowest average returns. 

During the expansion periods, the order of portfolio performances, listing according to 
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dependence model, is as follows: the Clayton copula, the Student’s t-copula, the Gaussian 

copula, the Gumbel copula, and the Pearson correlation. During the recession periods, the 

order of portfolio performances, listing according to dependence model, is as follows: the 

Clayton copula, the Gumbel copula, the Student’s t-copula, the Gaussian copula, and the 

Pearson correlation. According to Kole et al. (2007), the Gaussian copula, which does not 

consider lower-tail dependence, tends to be too optimistic on the subject of the benefits of a 

portfolio’s diversification, and the Gumbel copula, which focuses on the upper tail and pays 

no attention to the center of the distribution, tends to be too pessimistic. We verify these 

arguments by observing that the Gumbel-copula portfolio performs better than the Pearson 

correlation portfolio only during the expansion periods while the Gaussian-copula 

dependence portfolio performs better than the Pearson correlation portfolio only during the 

recession periods. Interestingly, as we increase the weight updating frequency from quarterly 

to monthly, the average portfolio returns for the full sample and recession periods also 

increase, regardless of the choice of dependence measures. Thus, the empirical results seem to 

support the need for active portfolio reconstruction during periods of economic recession. 

          As the weight updating frequency increases to daily, the Clayton copula delivers the 

highest average portfolio returns only during the expansion period. By contrast, the Student’s 

t-copula generates the highest portfolio average returns for the full sample and recession 

periods. The influence from the lower-tail dependence seems to diminish under daily weight 

reconstruction. The Gaussian copula portfolio delivers the worst portfolio performance during 

both expansion and recession periods. 

 

 [INSERT Table 3 ABOUT HERE] 
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5.3 Testing Portfolio Performance 

The results reported in the previous section show the average portfolio returns under different 

dependences and weight updating frequencies. One of potential difficulties with the study of 

average returns is the empirical results may be biased and the volatility may be high if 

extreme values exist over the examined period. Furthermore, previous methods used to 

examine the robustness of portfolio performance assume the data follow normal distribution 

(Jobson and Korkie,1981; Memmel, 2003). However, empirical results have indicated this 

assumption does not hold for financial data.  

          To cope with this problem, Ledoit and Wolf (2008) propose an alternative testing 

method using an inferential studentized time-series bootstrap. Ledoit and Wolf’s (2008) 

method is as follows.
7
 Let a and b be two investment strategies, and let rat and rbt be the 

portfolio returns for strategies a and b, respectively, at time t, where t ranges from 1 to i. The 

mean vector μ and the covariance matrix Σ for the return pairs are denoted by  

  (
  

  
)  and    (

  
    

     
 ).                                                                                         (14) 

The performances of strategies a and b can be examined by checking whether the difference 

between the Sharpe ratios for strategies a and b is statistically different from 0. That is,  

        
  

  
 

  

  
                                                                                                            (15) 

and 

 ̂    ̂    ̂  
  ̂

  ̂
 

  ̂

  ̂
                                                                                                           (16) 

                                                 
7
 For detailed derivations, please refer to Ledoit and Wolf (2008). 
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Where   is the difference between the two Sharpe ratios, and Sa and Sb are the Sharpe ratios 

for strategies a and b, respectively.  

          Let the second moments of the returns from strategies a and b be denoted by γa and γb. 

Then γa=E(γat
2
) and γb=E(γbt

2
 ). Let   and  ̂ be (           )  and (  ̂   ̂    ̂   ̂) , 

respectively. Then   and   ̂can be expressed as  

   ( ) and  ̂  ( ̂)        ,                                                                                                  (17) 

, where  ( )  
  

√     
 
 

  

√     
 
  and √ ( ̂   )

 
→  (   )  

          For the time series data, Ledoit and Wolf (2008) argue that Ψ can be evaluated by the 

studentized bootstrap as   ̂  
 

 
∑   

 
     

 , where     
 

√ 
∑  (   )   

   
               is 

the integer part of the fraction of the total observations divided by the blocks b. Also,  

  
  (   

    
 ̂     

    
 ̂     

     
 ̂    

     
 ̂)                                                             (18) 

          Following Ledoit and Wolf’s (2008) method, we examine the significance of 60 pairs 

of portfolio performances. The size of the bootstrap iteration is 10,000 to ensure a sufficient 

sample.
8
 Table 4 presents the results from Ledoit and Wolf’s (2008) portfolio performance 

test.  

           

 [INSERT Table 4 ABOUT HERE] 

 

The results indicate that during the recession periods and with the use of quarterly 

weight updating, the Pearson correlation underperforms all the copula dependences at a 

confidence level of 90% or greater. During recession periods and with the adoption of 

                                                 
8
 Ledoit and Wolf (2008) suggest that 5,000 iterations will guarantee a sufficient sample. We adopt the higher 

standard of 10,000 iterations to strengthen our testing results. 
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monthly weight updating, the superiority of the copula dependences jumps to a 99% 

confidence level. Moreover, during the recession periods and with the assumption of daily 

updating, the Student’s t-copula outperforms the Pearson correlation at the 99% confidence 

level.  

          Overall, Ledoit and Wolf’s (2008) empirical tests illustrate the superiority of the use of 

copulas during recession periods, regardless of the frequency of weight updating. During the 

bullish market, this outperformance seems to not be as statistically significant as it is during 

the bearish market.  

 

 

6. The Causes of Differences in Dependence Estimations 
 

Return dependence structure is critical in determining optimal portfolios, therefore, 

understanding the factors that affect the variation in correlations between different methods is 

an indispensible element in asset management. The aforementioned empirical tests confirm 

the need to use the conditional estimates of dependence in portfolio management; however, 

the factors that may explain the variations among correlation estimations have not yet been 

well studied. As shown in Figure 1, the differences of correlation estimations are influenced 

by business cycle and market risks. In this section, we consider several factors that are widely 

used to characterize economic states and study their impact on estimate of return dependence 

structure.  

 Table 5 presents the variables that are used to study the disparity between the Pearson 

correlation and the copula-based dependences. The VIX is regarded as the “fear index” and 

represents the projected volatility for the equity market. High VIX values also are 

accompanied with a loss of equity value.  We collect the data of maturity risk premium and 
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default risk premium to evaluate the impact of risk perceptions from the point of view of a 

fixed-income investor. The volatility of the U.S. dollar exchange rate serves as a proxy for the 

U.S. dollar currency risk.   

           

 [INSERT Table 5 ABOUT HERE] 

 

 One of the key concerns surrounding the use of copulas in modeling portfolio 

dependence structures is in what situation the conditional correlation will differ most 

significantly from the unconditional correlation. We denote  tiq ,  is the dependence computed 

by one of the copulas (e.g., Clayton), and 
ti,  is the Pearson correlation coefficient.  In Table 

6, we first report the percentages that copula correlation estimate is greater than the Pearson 

estimate (qi,t > i,t) and the other  (qi,t < i,t). For all countries except Japan, all copulas other 

than the Gaussian model, especially the Clayton and the Student’s t , demonstrate stronger 

correlations than the Pearson correlation over the sample period. This suggests that 

overlooking fat-tail and skewness in returns may cause an investor to underestimate the 

correlations among assets and overstate the ex post benefits of portfolio diversification.     

           

 [INSERT Table 6 ABOUT HERE] 

 

Table 6 also presents the results testing the difference of VIX between the two sub-

groups, qi,t > i,t  and qi,t < i,t . We report the average VIX under the two scenarios and the 

statistics testing the differences of the dependences between the estimates using various 

copulas and the Pearson correlation coefficient.   Since the values of VIX are between 9 and 
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81 while there is no theoretical foundation to support its normality, the truncated t-test 

suggested by Bagnoli and Bergstrom (2005) and the distribution-free Mann-Whitney test are 

applied to minimize the possible bias. Both the truncated t-statistics and the Mann-Whitney 

(M-W) z-statistics suggest that the copula-based estimates are greater than the unconditional 

correlation when the market is less volatile. Therefore, the use of the Pearson correlation may 

underestimate the return comovement during bearish market, leading to an overstatement of 

the benefits of portfolio diversification.          

We next evaluate how the condition of the financial market affect the departure 

between the unconditional correlation from copula-based estimations. The absolute value of 

the difference between copulas and the Pearson correlation coefficient, titiq ,,  , is the 

dependent variable in the following ordinary least squared (OLS) regression: 

ttkkktiti xr   ,,, ,          (19) 

where a constant  and an economic or financial variable xk (e.g., VIX) are included in the 

model. A description of the explanatory variables is given in Table 5.  

Table 7 reports the coefficients of the independent variables but omits k. For the 

majority of regressions, a high risk is associated with a large difference between conditional 

and unconditional correlations at a statistically significant level. Among the factors, high 

financial market implied volatility and default risk premium are the connected with a 

substantial disparity of dependence. The maturity risk or currency risk do not always 

statistically associate with the difference of correlations by using some copulas.     

           

 [INSERT Table 7 ABOUT HERE] 
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 The empirical results indicate the importance of modeling return dependence by 

applying copulas in portfolio management, especially during periods of great economic risk. 

Most return distributions show asymmetric downside and upside movements as well as fat 

tails. In Tables 4 and 5, we show that the performance of portfolios formed by conditional 

correlation structures is higher than those using the Pearson correlation. We further show that 

the discrepancy between conditional and unconditional correlations is sensitive to market 

volatility as are the risks in fixed-income and exchange markets. All this being the case, 

finding an appropriate approach to modeling dependencies between asset returns has become 

a significant challenge in the field of risk management. 

 

 

7. Conclusions 

In this paper, we study whether adopting time-varying copulas can improve portfolio 

performance. This paper is motivated by the fact that the traditional Pearson correlation does 

not adequately describe most financial returns. Moreover, the robustness of copula functions 

has not yet been fully examined under different economic states and weight updating 

scenarios. We evaluate the effectiveness of various copulas in asset management while 

considering the impact of various portfolio rebalancing frequencies and of different stages in 

business cycles on the results. We use the studentized time series bootstrap method suggested 

by Ledoit and Wolf (2008). We also examine the financial and economic risks that affect the 

difference between conditional and unconditional correlations. 

The main findings are as follows. First, modeling an international equity portfolio 

using Pearson correlations underperforms those using copula-based dependences, especially 

during periods of economic recession. Our findings are robust regardless of the rebalancing 
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frequencies. Second, the importance of lower-tail behaviors in portfolio modeling is 

highlighted by the higher-than-average portfolio returns from the Clayton-dependence 

portfolios. Third, the choice of weight updating frequency affects portfolio returns. The 

portfolios using a monthly weight updating frequency provide better portfolio returns than 

those using quarterly or daily weight adjustments. Finally, when the market risks are high, the 

conditional dependence estimates depart from and unconditional correlations. This suggests 

the need of copula-based models in portfolio management, especially during periods of 

economic downturn.  

We add to the current literature by thoroughly evaluating the effectiveness of 

asymmetric conditional correlations in managing portfolio risk. This paper synthesizes the 

major concepts and modi operandi of the previous research and maximizes the practicality of 

applying copulas under a variety of scenarios. Future research into copulas can be extended to 

contagion of different asset classes and interest rates. 
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Table 1: The Characteristics of Different Copulas 
Dependence Model Tail Dependence Parameter Range  

Pearson Correlation No ρ ϵ (-1, 1) 

Gaussian Copula No ρ ϵ (-1, 1) 

Student’s t-Copula Yes (Symmetry) ρ ϵ (-1, 1), v>2 

Gumbel Copula  Yes (Upper Tail) δ ϵ (0, 1)  

Clayton Copula Yes (Lower Tail) α ϵ [-1, ∞)\{0}  

 

 

 

 

Table 2: The Summary Statistics of the G7 Indices 
 Canada France Germany Italy Japan U.K. U.S. 

Mean (%) 0.0031 0.0064 0.0082 0.0003 -0.0017 -0.0039 -0.0082 

Std. Dev. 0.0164 0.0171 0.0178 0.0161 0.0155 0.0159 0.0144 

Skewness -0.8781 0.0740 0.0666 0.0477 -0.1475 -0.0535 -0.1365 

Kurtosis 14.1774 10.7576 8.6920 12.9310 7.4592 12.9143 12.1182 

Jarque-Bera 9494 4465 2404 7315 1481 7290 6171 

JB P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Observations 1780 1780 1780 1780 1780 1780 1780 

Note: The results indicate that the daily returns of the G7 indices are not normally distributed. 

 

 

  



25 

Table 3: Average Portfolio Returns 
 Clayton Gaussian Gumbel Student’s t Pearson 

Panel A: Quarterly Adjustments      

Full Sample Returns 1.44% 0.91% 1.16% 1.11% 0.57% 

 (1.1903) (1.1749) (1.1922) (1.1763) (1.0644) 

Expansion Returns 6.07% 5.63% 5.70% 5.66% 5.48% 

 (0.6946) (0.0798) (0.6962) (0.7014) (0.6613) 

Recession Returns -12.52% -13.35% -12.56% -12.64% -14.25% 

 (2.0549) (2.0025) (2.0578) (1.7922) (2.0153) 

Panel B: Monthly Adjustments     

Full Sample Returns 1.63% 1.08% 1.22% 1.22% 0.75% 

 (1.1764) (1.1812) (1.1835) (1.1736) (1.0199) 

Expansion Returns 6.15% 5.67% 5.66% 5.69% 5.23% 

 (0.6800) (0.6928) (0.6870) (0.6864) (0.6401) 

Recession Returns -12.01% -12.78% -12.19% -12.30% -12.80% 

 (2.0375) (2.0355) (2.0474) (2.0247) (1.1708) 

Panel C: Daily Adjustments     

Full Sample Returns 1.34% 0.85% 1.16% 1.47% 1.03 % 

 (1.1737) (1.1651) (1.1749) (1.1733) (1.0253) 

Expansion Returns 5.84% 5.35% 5.59% 5.70% 5.39% 

 (0.6733) (0.6859) (0.6839) (0.6766) (0.6367) 

Recession Returns -12.27% -12.74% -12.22% -11.34% -12.14% 

 (2.0382) (2.0053) (2.0277) (2.0346) (1.7280) 

Note: The average portfolio returns are presented in an annualized percentage format. Three weight 

updating frequencies are considered: quarterly, monthly, and daily. Within each frequency, we report the 

returns for the full sample period, the expansion period, and the recession period. The numbers in the 

parentheses are standard errors.  
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Table 4: Ledoit and Wolf (2008) Portfolio Performance Test 
 
Panel A: Quarterly Adjustments     

 CL-GA CL-GU CL-PE CL-t GA-GU 

Expansion 0.821 0.812 0.788 0.677 0.916 

Recession 0.060* 0.987 0.054* 0.839 0.0760* 

 GA-PE GA-t GU-PE GU-t PE-t 

Expansion 0.892 0.930 0.766 0.912 0.778 

Recession 0.0030*** 0.0727* 0.0267** 0.943 0.026** 

      

Panel B: Monthly Adjustments     

 CL-GA CL-GU CL-PE CL-t GA-GU 

Expansion 0.193 0.415 0.568 0.744 0.881 

Recession 0.249 0.803 0.021*** 0.295 0.092* 

 GA-PE GA-t GU-PE GU-t PE-t 

Expansion 0.850 0.892 0.795 0.896 0.809 

Recession 0.001*** 0.318 0.019*** 0.475 0.008*** 

      

Panel C: Daily Adjustments     

 CL-GA CL-GU CL-PE CL-t GA-GU 

Expansion 0.389 0.814 0.732 0.929 0.913 

Recession 0.000*** 0.119 0.173 0.371 0.000*** 

 GA-PE GA-t GU-PE GU-t PE-t 

Expansion 0.928 0.915 0.460 0.831 0.301 

Recession 0.718 0.001*** 0.045*** 0.778 0.019*** 

Note: The performance tests are conducted using the approach suggested by Ledoit and Wolf (2008). The tests 

examine whether the returns from two portfolios are significantly different at the 95% level. CL stands for the 

Clayton copula, GA stands for the Gaussian copula, GU stands for the Gumbel copula, PE stands for Pearson 

correlation, and t stands for the Student’s t-copula. * represents 90% statistical significance, ** represents 95% 

statistical significance, and *** represents 99% statistical significance. 

 

 

  



27 

 

Table 5: Economic Variables 

 

Variable    Definition 
VIX CBOE S&P 500 Volatility Index.  

MRP Maturity risk premium. Difference in US 90-Day T-Bills Secondary Market 

and US 10-Year Government Bond Yield. 

DRP Default risk premium. Difference in Moody's Seasoned Aaa and Baa 

Corporate Bond Yield.   

V(FX) Exchange rate risk. The annualized daily volatility in the change of US dollar 

Trade Weighted Index. The standard deviation is calculated by using previous 

100 daily data. 

i United States Overnight LIBOR 
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Table 6: VIX and the Difference between Copulas and Pearson Correlation Coefficient 
This table reports the percentages and the means of VIX that the dependence computed by one of the various copulas (e.g., 

Clayton), 
tiq ,
, is greater (or less) than Pearson correlation coefficient, 

ti, .  The truncated t- statistics and the Mann-Whitney 

(M-W) z statistics testing the difference of VIX between the two groups, qi,t > i,t  and qi,t < i,t , are also presented.  

 

 

  qi,t > i,t     qi,t < i,t   

Dependence Copula  Model    Copula  Model  

 Clayton Gaussian Gumbel Student’s t Clayton Gaussian Gumbel Student’s t 

US-Canada          

% 64.90 10.07 52.16 75.82  35.10 89.93 47.84 24.18 

Mean of VIX  14.36 19.65 13.65 15.59  30.36 23.68 26.87 33.73 

t (VIX Difference) -26.41 -6.66 -26.35 -22.47      

M-W z (VIX Difference) -29.66 -13.31 -7.73 -66.01      

US-France         

% 72.68 43.73 63.53 73.92  27.32 56.27 36.47 26.08 

Mean of VIX  15.50 16.63 14.81 15.93  31.88 22.58 28.98 31.43 

t (VIX Difference) -21.52 -11.40 -22.80 -18.81      

M-W z (VIX Difference) -55.61 -18.13 -29.89 -63.10      

US-Germany         

% 65.88 34.90 62.61 71.70  34.12 65.10 37.39 28.30 

Mean of VIX  15.16 17.56 14.99 16.00  29.27 21.27 28.33 30.05 

t (VIX Difference) -21.34 -7.52 -21.44 -17.79      

M-W z (VIX Difference) -36.73 -15.16 -29.32 -56.82      

US-Italy          

% 68.50 25.82 65.75 75.03  31.50 74.18 34.25 24.97 

Mean of VIX  15.10 18.81 15.01 15.89  30.58 20.38 29.50 32.24 

t (VIX Difference) -22.69 -3.26 -22.22 -19.51      

M-W z (VIX Difference) -41.91 -13.41 -35.53 -66.28      

US-Japan          

% 73.27 64.58 90.46 87.97  26.73 35.42 9.54 12.03 

Mean of VIX  19.31 17.93 18.19 16.96  21.81 23.71 20.96 42.03 

t (VIX Difference) -3.50 -8.02 -6.08 -24.53      

M-W z (VIX Difference) -73.78 -56.42 -184.46 -140.92      

US-UK          

% 70.33 40.26 61.63 74.18  29.67 59.74 38.37 25.82 

Mean of VIX  15.07 17.47 14.55 15.88  31.61 21.66 28.68 31.75 

t (VIX Difference) -23.73 -8.16 -23.80 -19.27      

M-W z (VIX Difference) -46.11 -19.45 -24.87 -63.57      
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Table 7: Difference between Copulas and the Pearson Correlation Coefficient 
Table 7 presents the coefficients of the ordinary least squared (OLS) on the absolute value of the difference between copulas 

and the Pearson correlation coefficient (
titiq ,,  ) with the economic and financial variables. The independent variables are 

described in Table 5. The model is
ttkktiti xq   ,,
, where 

tiq ,
 is the dependence computed by one of the copulas 

(e.g., Clayton), and 
ti,  is the Pearson correlation coefficient. A constant  and an economic variable (e.g., VIX) are 

included in the regression. k is not reported. Panel B reports the regressions of the independent variables that are statistically 

significant in Panel A.  A constant and one-period lags have been added but are not reported.    
 

 
 Clayton  Gaussian  Gumbel  Student’s t  

US - Canada         

VIX 0.0025 *** 0.0009 *** 0.0062 *** 0.0006 *** 

MRP 1.7607 *** 0.2642 *** 3.9434 *** 1.7585 *** 

DRP 5.5363 *** 1.5274 *** 12.1609 *** -0.0709  

V(FX) 7.1199 *** 1.2497 *** 11.0285 *** 0.9703 ** 

         

US - France        

VIX 0.0017 *** 0.0012 *** 0.0017 *** 0.0005 *** 

MRP 1.6814 *** 0.8199 *** -0.1195  1.7402 *** 

DRP 4.6254 *** 2.1720 *** 4.8017 *** 1.2931 *** 

V(FX) 4.3864 *** 2.1972 *** 4.7370 *** -0.5699  

         

US - Germany         

VIX 0.0034 *** 0.0023 *** 0.0031 *** 0.0021 *** 

MRP 1.2575 *** 1.2786 *** 0.9335 *** 1.1063 *** 

DRP 8.1215 *** 4.1589 *** 7.1726 *** 4.3048 *** 

V(FX) 6.8203 *** 4.0097 *** 7.0686 *** 2.1772 *** 

         

US - Italy         

VIX 0.0016 *** 0.0012 *** 0.0012 *** 0.0014 *** 

MRP 1.3895 *** 0.6565 *** -0.2226  2.1252 *** 

DRP 4.4813 *** 2.0798 *** 3.3713 *** 2.8906 *** 

V(FX) 3.9733 *** 1.9343 *** 3.1867 *** -0.2563  

         

US - Japan         

VIX 0.0023 *** 0.0003 *** 0.0017 *** 0.0013 *** 

MRP 2.5678 *** 0.2333 *** 4.0340 *** 1.5898 *** 

DRP 3.8739 *** 0.3664 *** 2.8251 *** 2.2431 *** 

V(FX) 4.0778 *** 0.2582 *** 5.1887 *** 3.1814 *** 

         

US - UK         

VIX 0.0009 *** 0.0012 *** 0.0012 *** 0.0011 *** 

MRP 2.0686 *** 0.8385 *** 0.7006 *** 2.3186 *** 

DRP 3.6487 *** 2.3059 *** 4.1042 *** 2.5386 *** 

V(FX) 3.7611 *** 2.2670 *** 4.1853 *** -0.1559  

         

* represents 90% statistical significance, ** represents 95% statistical significance, and *** represents 99% 

statistical significance. 
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Figure 1: The Dependence Using Different Copulas and Pearson Correlations 

 

Panel A: US vs. Canada 

 
 

Panel B: US vs. France 

 
 

Panel C: US vs. Germany 
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Panel D: US vs. Italy 

 
 

Panel E: US vs. Japan 

 
 

Panel F: US vs. UK 
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Appendix A 
Appendix A illustrates the dependence of the G7 countries from different dependence models. Note 

that to ease the comparison between dependences, we transform the Gumbel dependences by (1- δ). 

Therefore, the range for the Clayton and the Gumbel copulas is between 0 and 1, with 0 meaning no 

dependence and 1 standing for perfect dependence. The range for the Gaussian copula, the Student’s t-

copula, and the Pearson correlation is -1 to 1, with 0 meaning no dependence and 1 or -1 standing for 

complete dependence.  
 

Panel A: Gaussian Dependence 

 CA FR DE IT JP U.K. U.S. 

CA        

Max        

Min        

FR        

Max 0.7064       

Min 0.3914       

DE        

Max 0.6487 0.9686      

Min -0.2016 0.7856      

IT        

Max 0.6320 0.9407 0.9274     

Min -0.2143 -0.2303 0.7001     

JP        

Max 0.1814 0.2761 0.2478 0.4023    

Min -0.2115 -0.2238 -0.2229 0.0119    

U.K.        

Max 0.6393 0.9100 0.8665 0.8575 0.4664   

Min -0.1945 -0.2384 -0.2008 -0.2050 0.0329   

U.S.        

Max 0.7221 0.5031 0.5231 0.4661 0.5831 0.5671  

Min -0.1864 -0.2127 -0.2087 -0.2414 -0.2241 0.1997  

Panel B: Student’s t Dependence 

 CA FR DE IT JP U.K. U.S. 

CA        

Max        

Min        

FR        

Max 0.7509       

Min 0.3921       

DE        

Max 0.4578 0.9810      

Min -0.1070 0.7476      

IT        

Max 0.4367 0.9810 0.9586     

Min -0.1089 0.7476 0.6937     

JP        

Max 0.1093 0.1679 0.1522 0.6846    

Min -0.1284 -0.1511 -0.1574 0.0093    

U.K.        

Max 0.4478 0.8055 0.7380 0.7316 0.7335   

Min -0.1094 -0.1546 -0.1359 -0.1230 0.0284   

U.S.        

Max 0.5733 0.8055 0.3457 0.3176 0.4375 0.6614  

Min -0.1107 -0.1546 -0.1343 -0.1360 -0.1519 0.2687  
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Panel C: Gumbel Dependence 

 CA FR DE IT JP U.K. U.S. 

CA        

Max        

Min        

FR        

Max 0.5947       

Min 0.3220       

DE        

Max 0.3744 0.9063      

Min 0.0000 0.5928      

IT        

Max 0.3666 0.7286 0.8544     

Min 0.0000 0.0000 0.5516     

JP        

Max 0.0961 0.1384 0.1222 0.5356    

Min 0.0000 0.0000 0.0000 0.0200    

U.K.        

Max 0.3650 0.6946 0.6156 0.6086 0.5855   

Min 0.0000 0.0000 0.0000 0.0000 0.0234   

U.S.        

Max 0.4340 0.2816 0.2952 0.2649 0.3261 0.5967  

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.2493  

Panel D: Clayton Dependence 

 CA FR DE  IT JP U.K. U.S.  

CA        

Max        

Min        

FR        

Max 0.6763       

Min 0.2899       

DE        

Max 0.3585 0.9327      

Min 0.0000 0.6696      

IT        

Max 0.3463 0.7635 0.9004     

Min 0.0000 0.0000 0.6006     

JP        

Max 0.0038 0.0408 0.0287 0.6476    

Min 0.0000 0.0000 0.0000 0.0000    

U.K.        

Max 0.3657 0.7193 0.6567 0.6506 0.6794   

Min 0.0000 0.0000 0.0000 0.0000 0.0000   

U.S.        

Max 0.5248 0.2450 0.2476 0.1987 0.3472 0.6622  

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.1982  
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Panel E:  Pearson Correlation 

 CA FR DE  IT JP U.K. U.S.  

CA        

Max        

Min        

FR        

Max 0.7002       

Min 0.3966       

DE        

Max 0.6944 0.9726      

Min 0.3645 0.7890      

IT        

Max 0.6833 0.9596 0.9477     

Min 0.3877 0.8204 0.6965     

JP        

Max 0.3549 0.4594 0.4702 0.4073    

Min -0.0411 0.0251 0.0170 -0.0072    

U.K.        

Max 0.7080 0.9573 0.9298 0.9181 0.4612   

Min 0.3676 0.7791 0.6572 0.6990 0.0154   

U.S.        

Max 0.7586 0.6096 0.7443 0.5871 0.2078 0.5480  

Min 0.3764 0.2647 0.2921 0.2481 -0.1562 0.1913  

 

 


