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ABSTRACT 
 

This study critically reviews current fund performance measures. The performance 

measure derived from the return-based style analysis (RBSA) by Sharpe (1992) is 

introduced and compared with other regression-based measures. A comparative 

simulation is set up to test the robustness, accuracy, and efficiency of the alternative 

measures. The evidence shows that the RBSA measure is superior to other measures. 

The performance of the simple Jensen measures is sensitive to fund types. More 

complicated measures, like market-timing measures and multifactor measures show 

spurious market timing and wrong fund type information. 
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A Comparative Simulation Study of Fund Performance Measures 
 

1.  Introduction 
 

The investment performance of mutual fund managers has been examined at length in the 

finance literature. Various performance measures have been proposed since the original papers 

by Jensen (1968, 1969) and later refined by Black, Jensen, and Scholes (1972) and Blume and 

Friend (1973), for example, multi-factor measures by Fama and French (1993) and Carhart (1997) 

and conditional measures by Ferson and Scadt (1996), among others. This paper contributes to 

the fund performance measurement literature by critically examining current fund performance 

measures. A comparative simulation is set up and employed to test the robustness, accuracy, and 

efficiency of the alternative measures.  

The paper is organized as follows: section 2 critically reviews alternative traditional 

performance measures and discusses their limitations, such as benchmark inefficiency, spurious 

market timing, and unrealistic normality assumption. We then introduce a performance measure 

derived from the return-based style analysis by Sharpe (1992) and compare it with traditional 

regression-based measures. Section 3 sets up a simulation experiment to compare and evaluate 

alternative measures in terms of robustness, accuracy, and efficiency and section 4 discusses 

simulation results and analyses. Section 5 concludes the paper.   

2. Alternative Performance Measures 

Most of the traditional fund performance measures are estimated by the regression 

method and are actually application of the Capital Asset Pricing Model (CAPM). Depending on 

their assumptions about the measure of fund performance, the measure of fund risk, and the 

behavior of fund managers, we classify the measures into three general categories: (i) 

unconditional measures, where it is assumed that there is no market-timing activity; (ii) market-
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timing measures, where we control the measurement bias caused by the fund manager’s market 

timing behavior; and (iii) conditional measures that control the investment strategies using 

publicly available macroeconomic information.    

2.1. Unconditional Measures 

Jensen (1968) develops a single factor measure which implicitly assumes that the market 

portfolio could capture all the relevant risk of the fund. The model is  

( )it ft i im mt ft itr r r r      
                       (2.1)

 

where  itr  is the monthly return of fund i at period t, ftr  is the risk-free rate at period t,  mtr  is the 

monthly return of market portfolio at time t, and it is the disturbance term. The alpha, i , 

measures the performance of fund i during the evaluation period. im  is the covariance of the 

fund return and market portfolio return, divided by the variance of the market portfolio return. 

im  is a measure of the fund’s systematic risk, i.e. the sensitivity of the fund return to the market 

portfolio return.  

One issue related to the Jensen measure is the difficulty to find a proxy for market 

portfolio (benchmark inefficiency). This issue has been extensively investigated in the past three 

decades. Jensen (1968) studies 115 mutual funds from 1955 to 1964 and finds that on average 

the funds earned 1.1% less annually than what they should have earned given their systematic 

risk. An analysis of gross returns with expenses added back indicates that 42% of the funds did 

better than the overall market on a risk-adjusted basis, whereas the analysis of net returns 

indicates only 34% of the funds outperform the market. Jensen concludes that on average these 

funds could not beat a buy-and-hold policy - passive investment strategy. Contrary to Jensen’s 

findings, Ippolito (1989) finds that the estimated risk-adjusted return for the mutual fund industry 

is greater than zero even after accounting for transaction costs and expenses. Ippolito attributes 
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nonnegative alpha to the existence of informed actions by management. Ippolito uses S&P 500 

Index as the benchmark (the proxy for market portfolio) to study the 143 mutual funds during the 

period of 1965 to 1984. Elton et al. (1993) use the same data as the Ippolito’s data and notice 

that returns of S&P stocks, returns of non-S&P stocks, and returns of bonds are significant 

factors in performance measurement.  They argue that Ippolito’s conclusions are due to the 

choice of an inefficient benchmark and that Ippolito’s conclusion are reversed after taking 

account mutual funds’ holdings of non-S&P500 stocks and bonds. 

Empirical studies, particularly those of Lehmann and Modest (1987) and Grinblatt and 

Titman (1994), stress the sensitivity of the fund performance to the benchmarks chosen. 

Lehmann and Modest (1987) employ the standard CAPM benchmarks and a variety of Arbitrage 

Pricing Theory (APT) benchmarks to investigate this question. They find little similarity 

between the absolute and relative mutual fund rankings obtained from these alternative 

benchmarks, which suggest that the conventional measures of abnormal mutual fund 

performance are sensitive to the benchmarks chosen. Grinblatt and Titman (1994) use a sample 

of 279 mutual funds that existed from 1974 to 1984 and construct 109 passive portfolios to 

investigate the sensitivity of the performance to the benchmarks. They find that the measures 

generally yield similar inferences when using the same benchmark and inferences can vary, even 

from the same measure, when using different benchmarks. 

Roll (1977, 1978) argues that it is practically impossible to find a proxy for the market 

portfolio. This difficulty poses a serious problem when evaluating fund performance. Since the 

proxy market portfolio used is not the true market portfolio, the covariance of the return of the 

fund and the return of proxy market portfolio cannot correctly measure the risk born by the funds. 

So the alpha derived from the Jensen measure in (2.1) is biased. 
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Implicitly admitting that the stock market portfolio cannot capture all the risk factors, 

Fama and French (1993) propose a three-factor model. The alpha is estimated through the 

following time series regression: 

, ,( )it ft i im mt ft iSMB SMB t iHML HML t itr r r r r r                                  (2.2) 

where iSMB  is the sensitivity of the excess return of fund i to the return of the SMB portfolio and 

iHML  is the sensitivity of the excess return of fund i to HML portfolio. They suggest that 

securities’ returns in excess of  risk-free rate are explained by the sensitivity of their return to 

three factors: (i) the excess return on a broad market portfolio, denoted by ( )mt ftr r ; (ii) the 

difference between the return on a portfolio of small-cap stocks and the return on a portfolio of 

large-cap stocks, denoted by ,SMB tr ; (iii) the difference between the return on a portfolio of high 

book-to-market (B/M) stocks and the return on a portfolio of low B/M ratio stocks, denoted by 

,HML tr .  

Carhart (1997) finds another significant risk factor: the momentum factor, which can 

explain the variation of stock returns. After adding this factor to Fama-French three-factor model, 

he proposes a four-factor model. The additional factor captures the one year momentum anomaly, 

recognized by Jegadeesh and Titman (1993). The model may also be interpreted as a 

performance attribution model. The coefficients on the factor-mimicking portfolios, 

, , ,im iSMB iHML   and 1iPR YR , indicate the proportion of mean return, attributable to four 

elementary strategies: high beta stocks versus low beta stocks, large-cap stocks versus small-cap 

stocks, value stocks versus growth stocks, and one year return momentum stocks versus 

contrarian stocks. The model is 

, , 1 1 ,( )it ft i im mt ft iSMB SMB t iHML HML t iPR YR PR YR t itr r r r r r r                               (2.3) 
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where , ,, ,SMB t HML tr r and 1 ,PR YR tr are returns on value-weighted  zero-investment factor-mimicking 

portfolios for size, B/M ratio, and one year momentum factors at period t, and it is the 

disturbance term. 

The multi-factor measures, such as the Fama-French three-factor measure and the Carhart 

four-factor measure, suffer from three problems as they become more refined and complicated. 

First, they cannot overcome the benchmark inefficiency; they can only reduce the inefficiency 

effect by adding more risk factors. Second, it is not easy to interpret the coefficients of the risk 

factors in regression models except for the coefficient of market portfolio. The signs of the 

coefficients may indicate the fund styles, but they provide no information about the asset 

allocation of the fund to each asset category or sub-asset groups. Third, the measures are biased, 

if managers adjust asset allocation or loadings of stocks according to the expectation of market 

movement or the predetermined market information, such as risk-free rate, dividend yield of the 

stock market and term structure.  

2.2. Market Timing Measures 

When fund managers adopt a market-timing strategy, which is common in fund 

management, the previous unconditional measures are biased. Market timing means that the fund 

managers change asset allocations or the risk level of stocks on the basis of her/his expectation of 

future market movement. When managers successfully time the market movement, the measures 

without controlling market-timing behavior are biased (Ferson and Schadt, 1996). The Treynor 

and Mazuy (1966) model and the Henriksson and Merton (1981) model are proposed to deal 

with this issue. 

The Treynor-Mazuy model, later refined by Bhattacharya & Pfleiderer (1983), assumes 

that the risk level of the portfolio varies when managers adopt market-timing strategies. In the 
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original model the beta (measuring the risk of the fund) is a linear function of excess market 

return: ( )TM
i im i mt ftr r     . When the expected market return is higher than the risk free rate, 

the risk of the portfolio is higher in order to obtain a higher expected return. On the other hand, 

when the expected market return is below the risk free rate, the manager reduces the portfolio’s 

exposure to the market. With this idea, the Jensen model in (2.1) is modified by adding a 

quadratic term: 

2( ) ( )TM
it ft i im mt ft i mt ft itr r r r r r                               (2.4) 

where itr , ftr
,
 mtr  and im  are as defined in equation (2.1). TM

i  measures the managers’ market 

timing ability, where a positive TM
i  indicates that managers have superior market timing ability. 

i  measures the fund performance due to mangers’ active management after controlling market-

timing behavior. 

Instead of assuming that the beta is a linear function of excess market return, Henriksson 

and Merton (1981) propose an alternative model. They assume that managers choose two 

different levels of risk depending on the managers’ forecast of the market return. If the excess 

market return is positive, a higher risk level is chosen. If the excess market return is negative, a 

lower risk level is chosen. They modify the Jensen measure in (2.1) by adding a term 

(0, )mt ftMAX r r , which gives 

 ( ) (0, )HM
it ft i im mt ft i mt ft itr r r r MAX r r                              (2.5)  

where HM
i  is used to measure the manager’s market timing ability. A positive HM

i  indicates 

superior market timing ability. Henriksson and Merton (1981) interpret the term 

(0, )mt ftMAX r r  as the payoff to an option on the market portfolio with an exercise price equal 
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to the risk free asset return. i  is the fund performance in the Henriksson-Merton market-timing 

model. 

2.3. Conditional Measures 

Ferson and Schadt (1996) further explore the market-timing behavior by including lagged 

macro information into the model. The conditional measure model recognizes that the risk and 

the expected return of the fund may vary over time given some predetermined public macro 

information. They argue that mangers, who obtain higher returns using public information, 

should not be interpreted as superior performance. Unconditional measures and market-timing 

measures may confuse the performance from the managers’ selection ability and market-timing 

ability with the performance from the managers’ responses to the changing macro information.   

Ferson and Schadt (1996) argue that the alpha and betas (in unconditional as well as 

market timing measures) are biased when managers respond to information of the last period, 

such as risk-free interest rate and term structure. Ferson and Schadt (1996) show that 

1lim( ) (( ), ) / var(( ))T
iu ic i mt ft t mt ftp B Cov r r z r r                  

1lim( ) ( )( lim( )) (( ), )T
i mt ft ic i mt ft i tp a E r r p Cov r r B z                        (2.6)  

where T  denotes transpose. iu is the unconditional measure of fund i. ic  is the true beta in the 

conditional model, and 1tz  is an innovation vector of the lagged information variables Zt-1, i.e., 

1 1 1( )t t tz Z E Z    . T
iB ’s are the response coefficients to the innovations of the lagged 

information variable.  From (2.6), we can see iu  is a biased estimator of ic . The direction of the 

bias depends on the covariance between the excess market return and the innovations of the 

lagged macro information. Ferson and Schadt (1996) use four public information variables that 

are useful to predict the market: the lagged level of short term Treasury bill rate, the January 
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dummy, the lagged dividend yield of the stock index, and the lagged measure of the slope of 

term structure, which were previously observed by Keim and Stambauch (1986), Fama and 

French (1988), Ferson and Harvey (1991), and Evans (1994).  

Market-timing models assume that any information that is correlated to the future market 

return is superior information. The conditional model assumes public macro information is not 

superior information. The performance resulting from the public information should be separated 

from the managers’ market-timing ability. The beta of the fund is assumed to be a linear function 

of public information vector zt-1 that captures the changing economic conditions:  

1 1( ) T
i t im ic tz z                     

1 1 1( )t t tz Z E Z                            (2.7)      

The linear specification on time-varying betas are also used in previous studies, such as 

Ferson (1985), Shanken (1990), Ferson and Harvey (1993), Cochrane (1996), and Jagannathan 

and Wang (1996), among others. The linearity assumption is used for fund performance 

measurement for two reasons: it is motivated by theoretical models of managers’ behavior, such 

as in Admati et al. (1986)  and, it is easy to interpret as illustrated by Ferson and Schadt (1996). 

Thus we could modify the Jensen model in (2.1) as 

1( ) ( )T
it ft i im mt ft ic t mt ft itr r r r z r r                             (2.8)     

where im  is the unconditional mean of the conditional beta in (2.7). The elements of T
ic  are the 

response coefficients with respect to the innovation of the lagged information variables Zt-1. 

When we apply the conditional measure to the Fama-French three-factor model and the 

Carhart four-factor model, the models become very complicated, since it consumes too many 

degrees of freedom and thereby leading to less efficient estimation of alpha and betas. Although 
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the conditional measure is theoretically justified by Ferson and Schadt (1996), it makes little 

sense in practice. 

All the measures that we reviewed till now are assuming a constant alpha. However, 

Christopherson et al. (1998) allow a time-varying alpha in their measure, i.e. they treat alpha as a 

function of Zt-1,  

1 1( ) T
i t i i tz A z                           (2.9) 

where 1 1 1( )t t tz Z E Z    , which is the same as we mentioned in (2.6). Allowing a time-varying 

alpha makes the measures more complicated. It has the same shortcoming as the conditional 

measure.  

Traditional fund performance measures suffer a number of limitations. First, it is difficult 

to find a proxy for market portfolio (it is called benchmark inefficiency). This difficulty poses a 

serious problem when evaluating fund performance, because if the market portfolio used is not a 

perfect market portfolio the covariance of the return of the fund and the return of the market 

portfolio cannot correctly measure the risk born by the fund. Thus the alpha derived from the 

measure is biased. Later efforts, like the Fama-French three-factor measure and the Carhart four-

factor measure, attempted to solve this problem by adding more risk factors into the Jensen 

measure. Although they could reduce the inefficiency problem to some extent, the inefficiency is 

still material as noted by Grinblatt and Titman (1994). In addition, the complex multi-factor 

measures brought two other problems along:  it consumes more degrees of freedom, making 

statistical inference of coefficients unreliable. And it is difficult to interpret the beta coefficients. 

They provide no quantified information about the fund’s asset allocations to each asset category, 

which is valuable for the in-depth analysis of fund risk level. 
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Second, although market timing and conditional measures are theoretically attractive, it is 

practically impossible to implement them. Admati et al. (1986) point out that it is difficult to 

separate timing from selection ability. Furthermore, when managers invest in options or option-

like securities, spurious market-timing ability and selectivity ability may be observed as noted by 

Jagannathan and Korajczyk (1986). In addition, when managers trade securities in less than one 

month, which is common in practice, we could also observe spurious market-timing ability as 

noted by Ferson and Schadt (1996). The correct separation of market-timing ability from 

selection ability, denoted by alpha, depends on some impractical constrictions. Regarding 

conditional measures, the measures are complicated in multi-factor models, making the inference 

about beta coefficients and alpha unreliable within a three-year evaluation period. And we cannot 

increase the sample size to deal with this problem, because the fund may significantly shift its 

investment strategy or change fund managers in the longer sample period. But, it is a common 

practice to use three-year data to evaluate fund performance, see, for example, Cai et al. (1997), 

Carhart (1997), Elton et al. (1996), and Kosowski et al. (2001).  

Third, all these measures are estimated by the regression method. An underlying 

assumption is that it  is normally distributed in order to make hypothesis tests on betas and alpha. 

But many empirical studies have shown this assumption is not likely true, for example, a recent 

study by Kosowski et al. (2001), where they used bootstrap analysis to assess the p value of 

alphas. 

2.4. A Performance Measure Based on Style Analysis 

Sharpe (1992) proposes to measure fund performance based on the return-based style 

analysis, which overcomes some limitations of traditional measures because of its different 

rationale and estimation techniques. It attracted a lot of attentions since this pioneering work, see, 
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for example, Buetow, et al. (2000), Christopherson (1995, 1999), Cummisford, et al. (1996), 

Lieberman (1996), and Mayes, et al. (2000). The model is 

    1 1 2 2 ...t t t k kt tr f f f                         (2.10)  

where tr  is the fund return t. ktf  is the kth index return in period t. 1tf  to ktf  are called style 

indexes. The style of the fund is identified by the coefficients of the style indexes ( i ), which are 

defined as style exposures. For example, the small-cap growth fund is sensitive to small-cap 

growth stocks segment of the market and is expected to have an exposure towards this market 

leading to a relatively large style coefficient on the small-cap growth style index. The model 

implicitly assumes that the style of the fund is time-invariant in the estimation period. Therefore, 

it implies that the estimated style exposures are the average style during the evaluation period if 

the fund changes its factor loadings of assets. The return-based style analysis provides attractive 

results. It offers valuable insights regarding the fund’s investment style. It provides a mechanism 

to detect asset mix of the fund based on manager’s investment style. 

Return-based style analysis can be naturally extended to measure fund performance by 

decomposing the return in model (2.10) into two parts. One is, 1 1 2 2 ...t t k ktf f f     , 

attributable to fund styles. The other is attributable to t  due to the active management like 

securities selection and asset allocation. It is defined as the tracking error at period t. The 

expected value of the tracking error, E( t ), is defined as the performance of the fund, alpha. It is 

the difference between the realized fund return and the return of passive style indexes.  

The measure has several advantages compared to traditional measures estimated by the 

regression method. First, we do not require that it  should be normally distributed. it  can be 

distributed differently. In addition, the expected value of it  is not even required to be zero. We 
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interpret the non-zero value of it  as the management effect, caused by securities selection or 

asset rotations. The expected value of it is the measure of fund performance, a counterpart of the 

alpha of traditional measures. Second, we circumvent the benchmark inefficiency problem by 

including all the investable style indexes in the RBSA measure. The only requirements about the 

style indexes are that they are exhaustive and independent of each other (i.e., orthogonal). These 

requirements are easily accommodated by a large amount of indexes publicly available in the 

market.  Third, the betas estimated in the RBSA measure provide useful information about fund 

styles. Fund styles are essential for the decomposed-analysis of the fund’s risk level by 

institutional investors. 

3.  Setup of Simulation Experiment 

We now test the robustness, accuracy, and efficiency of the alternative performance 

measures, and compare the RBSA measure with traditional measures by a comparative 

simulation experiment. The fund returns are generated from 

   1 1 2 2 3 3 4 4 5 5t t t t t t tr a R R R R R                  (3.1) 

where a  is set at 5% annually. It is possible to change the value of a  in the simulation, but the 

results (not reported) show that the selection of a  does not change our conclusions about the 

accuracy and efficiency of the measures. In (3.1) 1tR , 2tR , 3tR , 4tR and 5tR represent three-month 

Treasury bill rates, Russell Top 200 Growth Index, Russell Top 200 Value Index, Russell 2000 

Growth Index, and Russell 2000 Value Index1, respectively. These five indexes represent the 

fund’s asset allocation to money market, large-cap growth stocks, large-cap value stocks, small-

cap growth stocks, and small-cap value stocks. t  is a randomly generated  residual with a mean 

                                                 
1 The definitions of the indexes are available at http://www.russell.com/US/Indexes/US/Definitions.asp. 
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of zero and standard deviation calculated from the actual style analysis of more than 1000 US 

domestic well-diversified equity mutual funds, following normal distribution.  

To test the measures’ ability to measure fund performance and its styles in different 

situations, we use four sets of beta coefficients as follows: 

     

0.05 0.48 0.47 0 0

0.05 0 0 0.48 0.47

0.05 0.35 0.35 0.13 0.12

0.05 0.13 0.12 0.35 0.35

 
 
 
 
 
           (3.2)

 

The four sets of beta coefficients are to mimic the fund return behavior of four general 

types of funds: large-cap funds, small-cap funds, well-diversified funds with a preference to 

large-cap stocks, and well-diversified funds with a preference to small-cap stocks. For example, 

the first set of beta coefficients, [0.05 0.48 0.47 0 0], means that the simulated funds put 5% of 

assets in Treasury bills, 48% of assets in well-diversified large-cap growth stocks, 47% of assets 

in well-diversified value stocks, and no assets in small-cap stocks. 

With the simulated return series of the fund, we are testing the power of the following 

performance measures that we reviewed in section 2: 

1. RBSA measure that is formulated under the framework of a convex  quadratic programming 

problem (RBSA):  

1 1 2 2 ...t t t k kt tr f f f         

subject to ' 1e  and 0   

In the simulation setup, the alpha of RBSA measure is simplified as the expected value of the 

in-sample t . 

2. Jensen measure (JS):  

( )t ft t m mt ft tr r r r        
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3.   Jensen measure with Treynor-Mazuy market-timing adjustment (JS-TM): 

2( ) ( )TM
t ft m mt ft mt ft tr r r r r r           

4. Jensen measure with Henriksson-Merton market-timing adjustment (JS-HM):
      

( ) (0, )HM
t ft m mt ft mt ft tr r r r MAX r r           

5. Fama-French three-factor measure (FF3): 

, ,( )t ft m mt ft SMB SMB t HML HML t tr r r r r r            

6. Fama-French three-factor measure with Treynor-Mazuy market-timing adjustment (FF3-

TM): 

2
, ,( ) ( )TM

t ft m mt ft SMB SMB t HML HML t mt ft tr r r r r r r r               

7. Fama-French three-factor measure with Henriksson-Merton market-timing adjustment (FF3-  

HM): 

, ,( ) (0, )HM
t ft m mt ft SMB SMB t HML HML t mt ft tr r r r r r MAX r r               

where rt is fund retunrn.  

Betas are risk exposures. And in the RBSA measure, betas are style coefficients. The risk-

free rate ftr  is three-month Treasury bill rate. The market portfolio mtr  is S&P 500, the most 

frequently used proxy for market portfolio.  TM  and HM  are market-timing coefficients 

measured by Treynor-Mazuy method and Henriksson-Merton method, respectively. In Fama-

French three-factor models, ,SMB tr  and ,HML tr  are used to control investment strategies due to size 

effect and B/M ratio, respectively, where ,SMB tr  is the difference between the monthly return of 

Russell 1000 index and Russell 2000 index, and ,HML tr  is the difference between the monthly 

return of Russell 3000 Value Index and Russell Growth Index. 
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4.  Simulation Results and Analysis 

4.1. Simulation Results and Analysis of Alpha and R2 

Table 1 shows simulation results of alpha and R2 from seven measures, based on 1000 

simulation replications of randomly generated fund return series under four sets of style 

coefficients in (3.2). They are presented in table 1 from panel 1 to panel 4. The alpha and R2 are 

the average values of the estimation from 1000 simulation replications. The bias is reported as 

the difference between the estimated alphas from the measures and the true alpha, which is fixed 

at 5% in the simulation. To show the efficiency of the performance measurements, we also report 

the empirical confidence interval at 95% from the simulations. The lower bound is the 5th 

percentile of the 1000 estimated alphas and the upper bound is the 95th percentile of the 1000 

estimated alphas. Because the index return series is possibly not normal due to the cross 

correlations among stocks in the index portfolios (Kosowski et al., 2001), we construct the 

confidence intervals from simulation instead of constructing them from t values. 

[Insert Table 1 about here] 

Panel I of table 1 shows alpha estimates of the simulated fund with style 

coefficients 0.05 0.48 0.47 0 0 , meaning 5% of fund asset is allocated to money market, 

48% to well-diversified large-cap growth stocks, 47% to large-cap value stocks, and no asset is 

allocated to small stocks (growth as well as value). We find that RBSA is the most accurate 

measure with the bias only -0.24% annually. The other measures’ accuracy is not comparable to 

that of the RBSA measure. The biases are larger than 1% as shown in the panel.  Using the first 

set of betas, the three Jensen-based measures, that is, JS, JS-TM, and JS-HM, are less accurate 

than three FF3-based measures, that is, FF3, FF3-TM, and FF3-HM. The average bias of three 

JS-based measures is about two times larger than the average bias of three FF3-based measures.  



 17

After adjusting market-timing behavior, which actually does not exist in our simulation, 

with methods suggested by Treynor-Mazuy and Henrikksson-Merton, the biases are even larger, 

except for FF3-TM. Since there is no market-timing in the simulation, we should not observe any 

change of biases after adding a market-timing term if the market-timing models are solid. We 

observe spurious market-timing in the simulation. The spurious market timing is also found 

empirically by Cai, et al. (1997), Glosten and Jagannathan (1994), and Jagannathan and 

Korajczyk (1986). 

The size of confidence interval indicates the efficiency of measures. JS measure has the 

smallest size, however since the alphas are severely biased, the efficiency gain has no meaning. 

The size of RBSA is similar to JS but less biased. The size of confidence interval is largest for 

FF3-based measures, which are about two times of the size of JS-based measures. This wider 

confidence interval of FF3 measures is mainly caused by using more variables at the right side of 

the regression. This kind of correlation may cause inaccurate estimation of alphas in FF3 

measures.  

We also notice that the R2 is highest for RBSA measure whose average is 96%. FF3-

based measures show a little higher R2 than JS-based measures. Therefore, using the first set of 

betas that mimics a large-cap fund we find RBSA measure is less biased and has the largest 

explanatory power and efficiency. 

Panel II shows results using another set of betas. The simulated fund behaves like a 

small-cap fund according to style coefficients that we set in simulation.  The magnitude of the 

bias of RBSA is similar to what we observed in panel I, but now is upwardly biased. And again 

RBSA has the smallest bias. But now we observe that bias of JS-based measures is much larger 

and R2 is quite low, ranging from 52% to 55%. This is because we are using S&P 500 as the 
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market benchmark, in which most of the stocks are large-cap stocks. This bias clearly illustrates 

the inability of JS-based measures in capturing performance when funds invest in small-cap 

securities. FF3-based measures are using the same market benchmark as JS-based measures, but 

the biases are much smaller, which is due to the explicit incorporation of two risk factors related 

to size effect and the B/M ratio. We also observe the explanation power of FF3 is comparable to 

that of the RBSA measure. Therefore, when a fund is a small-cap fund, JS-based measures are 

not capable of estimating the true alpha. FF3-based measures are more robust than JS-based 

measures, because they explicitly consider the size effect in the model. RBSA is still the best 

measure in this case with high R2, small bias and efficient estimation. 

In panel III, we randomly generate a fund that widely invests in all the stocks in the 

market, but leans to large-cap stocks. We notice that the bias of RBSA is 0.1, but JS-based 

measures also have small biases when evaluating this kind of fund. The average is -0.29. The 

bias, efficiency and R2 of FF3-based measures are similar to what we observed in panel I and 

panel II.  In this set of style coefficients, JS-based measures are comparable to RBSA in terms of 

bias and efficiency but RBSA is more powerful to explain the fund’s return behavior with the 

highest R2, 0.96. 

In panel IV we generate a fund that widely invests in all the stocks in US market, but 

leans to small stocks with 70% of assets allocated to small stocks. We find RBSA is very 

accurate with only a 0.02% bias. The magnitude of bias and R2 for FF3 measures is stable 

through the four situations. Regarding JS measures, in panel IV we again observe large bias and 

low explanation power ranging from 66% to 68%, as we observed in panel II. 

From the summary panel of table 1, we find that RBSA unanimously has small biases 

with an average bias of 0.01% annually, high R2 accounting for 97% of return variation, and 
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small size of confidence intervals, through the four situations in table 1. FF3-based measures 

have high R2, stable biases, and stable size of confidence intervals, but the average bias is around 

2.5%, which is much larger than the average bias of RBSA. JS-based measures have the largest 

biases and the biases are volatile depending on the type of the simulated fund. Although the size 

of the confidence intervals of JS-based measures is relatively small, the biases and variation of 

estimated alphas make the efficiency not meaningful. Adjusting market timing for JS and FF3 

only makes the estimation less efficient, and causes biases larger in JS-based measures. 

Therefore, from simulation results we may say the RBSA is a better measure in measuring fund 

performance and explaining the fund return variation compared to other traditional measures. 

4.2. Simulation Results and Analysis of Style Coefficients (Betas) 

Table 2 presents simulation results of style coefficients (betas) in four situations. To test 

the robustness, accuracy, and efficiency of the seven measures in estimating style coefficients, 

we simulate four types of funds, that is, large-cap funds, small-cap funds, well-diversified funds 

with a preference for large-cap stocks, and well-diversified funds with a preference for small-cap 

stocks. The estimates of betas in the table are average betas of 1000 simulations, and the 

empirical confidence interval is obtained by setting the 5th percentile of the estimates as the 

lower bound and 95th percentile as the upper bound.  

Panel I shows the estimation results when the simulated fund behaves like a large-cap 

fund. Our estimates of betas using RBSA are very close to the actual betas. The non-negativity 

constraints of betas may cause a small upward bias when betas are actually zeros and a small 

downward bias for other positive betas with the same magnitude. When we use traditional 

measures: JS-based measures and FF3-based measures, we find that the betas of the market 

benchmark are uniformly above 0.9. Considering the actual asset allocation where 95% of assets 
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are invested in large-cap stocks, this beta estimation is acceptable. FF3 measures are capable of 

capturing the style of the fund. We find that smb is significant in all three cases, indicating a 

large-cap fund.  

[Insert Table 2 about here] 

When we study the performance measurement of a fund that behaves like a small-cap 

fund, which is shown in panel II, we have different results. The estimates based on RBSA are 

similar to the first panel, but we observe spurious market timing when using JS-based measures. 

In both JS-TM and JS-HM, we observe significant negative market timing. This may be caused 

by different return behavior of small-cap stocks from large-cap stocks, because after we control 

the size effect in FF3-based measures we don’t observe market timing behavior of the fund. 

Again we find that FF3-based measures are capable of capturing the fund style, since smb is 

positive and significant, meaning that the fund generally moves in the same direction as the small 

stocks.  

In panel III we investigate the measures’ accuracy in measuring a well-diversified equity 

fund that leans to large-cap stocks. The accuracy in estimation of RBSA is stable as we observed 

before. But we find that FF3 measures show that the fund is a small-cap fund, which gives a 

significant positive smb . The result contradicts the actual asset allocation of the simulated fund, 

which invests 70% of its assets in large-cap stocks. Therefore, FF3-based measures don’t 

correctly estimate the coefficients in this situation. 

Panel 4 gives the estimation results of a well-diversified equity fund that leans to small-

cap stocks. The estimates of RBSA are unbiased in this situation. In RBSA, all five estimates of 

betas are precisely the true values. We again observe the spurious negative market timing in JS-
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based measures, but no market timing in FF3 measures. The styles from FF3 measures are 

accurate, which indicates that it is a small-cap fund. 

From simulation results of beta estimation, RBSA is quite successful in identifying the 

true asset allocation no matter whether it is a large-cap fund, a small-cap fund, or a well-

diversified fund. FF3-based measures are capable of capturing the true fund style when the fund 

is exclusively investing in large-cap or small-cap stocks; however, when the fund is a well-

diversified fund, FF3-based measures face difficulty in identifying the true styles. Another 

finding is that FF3-based measures may avoid the spurious market timing that we observed in 

JS-based measures.   

5.  Conclusion 

From our simulation results of the performance measurement and style identification, we 

find that the RBSA measure seems to be the best measure among the seven measures. The RBSA 

measure is accurate, efficient and robust, and its performance does not depend on the type of the 

fund in the study. The average bias of alphas is around 0.01% annually, whereas the average 

biases of other measures range from 2.45% to 8.57% in absolute value. The beta coefficients 

estimation is also satisfactory, very close to the true betas as shown in table 2. However, the beta 

estimation may be upwardly biased when the beta is actually zero. Since we observed that the 

bias is quite small around 0.01, it does not pose any difficulty in implementation. 

The estimates of JS-based measures are unstable, depending on the fund type. When the 

fund is a large-cap fund, the results are acceptable. However, when funds invest in small-cap 

stocks, there are some problems. First, it cannot identify fund styles. Second, it shows spurious 

negative market-timing, and third, it captures only a relatively small part of return variations, 

where 2R  is quite small compared to other measures with 2R well above 90%.  
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FF3-based measures have stable estimates, not depending on the fund type. We find that 

using FF3-based measures we may avoid spurious market-timing that we observed in JS-based 

measures. However, they are unable to identify the true fund style of a well-diversified equity 

fund, thus the alpha estimates derived from the measures are also questionable. In addition, the 

accuracy and efficiency of the measures are not comparable with those of RBSA measure. 

Therefore, based on the criterion of accuracy, efficiency and robustness of the estimation of 

alpha and betas, RBSA appears to be superior to other measures.  
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______________________________________________________________________ 

TABLE 1 

Simulation I (Alpha and 2R ) 

_____________________________________________________________________ 

Panel I ( )05,04,47.03,48.02,05.01   

Measures  Alpha         Bias  C.I.  Size  2R  

RBSA   4.76  -0.24         [2.05    7.59] 5.54 0.96  

JS   1.13  -3.87         [-1.46   3.75 ] 5.21 0.94  

JS-TM   0.51  -4.49         [-2.83   3.63 ] 6.46 0.94  

JS-HM   -0.32  -5.32         [-4.43   3.68 ] 8.11 0.94  

FF3   2.68  -2.32         [-4.03   9.13 ] 13.16 0.95  

FF3-TM  3.01  -1.99         [-4.20   10.16 ] 14.36 0.95  

FF3-HM  2.62  -2.38         [-5.15   10.41 ] 15.56 0.95  

 

Panel II ( )47.05,48.04,03,02,05.01   

Measures  Alpha         Bias     C.I.  Size  2R  
RBSA   5.16  -0.16         [2.45    7.82] 5.37 0.97  

JS   13.95  -8.95         [11.51   16.39 ] 4.88 0.52  

JS-TM   24.03  19.03         [20.89   27.23 ] 6.34 0.55  

JS-HM   27.48  22.48         [23.32   31.87 ] 8.55 0.54  

FF3   1.89  -3.11         [-4.71   9.02 ] 13.73 0.97  

FF3-TM  2.19  -2.81         [-4.87   8.91 ] 13.78 0.97  

FF3-HM  2.21  -2.79         [-5.44   9.54 ] 14.98 0.97  
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______________________________________________________________________ 

TABLE 1 (Continued) 

Simulation I (Alpha and 2R ) 

_____________________________________________________________________ 

Panel III ( )12.05,13.04,35.03,35.02,05.01   

Measures  Alpha         Bias  C.I.  Size  2R  
RBSA   5.1  0.1         [2.31    8.03] 5.72 0.96  

JS   4.71  -0.29         [2.04   7.29] 5.25 0.92  

JS-TM   6.75  1.75         [3.42   9.98] 6.56 0.92  

JS-HM   7.03  2.03         [2.72   11.14] 8.42 0.92  

FF3   2.53  -2.47         [-4.17   9.01] 13.18 0.95  

FF3-TM  2.75  -2.25         [-4.33   9.75] 14.08 0.95  

FF3-HM  2.49  -2.51         [-4.99   10.22] 15.21 0.95  

 

Panel IV ( )35.05,35.04,12.03,13.02,05.01   

Measures  Alpha         Bias     C.I.  Size  2R  
RBSA   5.02  0.02         [2.31    7.81] 5.5 0.97  

JS   10.64  5.64         [8.15   13.13] 4.98 0.67  

JS-TM   17.86  12.86         [14.63   21.27 ] 6.64 0.69  

JS-HM   20.09  15.09         [15.67   24.44] 8.77 0.68  

FF3   1.87  -3.13         [-4.53   9.06] 13.59 0.96  

FF3-TM  2.25  -2.75         [-4.74   9.06 ] 13.8 0.96  

FF3-HM  2.14  -2.86         [-5.21   9.62 ] 14.81 0.96  
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______________________________________________________________________ 
TABLE 1 (Continued) 

Simulation I (Alpha and 2R ) 
 

The table provides simulation results of alpha and 2R  under four sets of beta coefficients 
presented in equation (3.2). RBSA is return based style analysis measured by quadratic 
programming, JS is Jensen measure, JS-TM is JS measure with Treynor-Mazuy market-timing 
adjustment; JS-HM is the JS measure with Henriksson-Merton market-timing adjustment; FF3 is 
the Fama-French three-factor measure, FF3-TM  is the FF3 measure with Treynor-Mazuy 
market-timing adjustment; FF3-HM  is the FF3 measure with Henriksson-Merton market-timing 
adjustment. CI is the empirical confidence interval of alpha estimator based on simulations. Size 
is the length of C.I. 
_____________________________________________________________________ 
Results Summary 
        RBSA   JS   JS-TM       JS-HM   FF3       FF3-Tm    FF3-HM  
Alpha 
Panel 1         4.76  1.13    0.51          -0.32    2.68          3.01        2.68  
Panel 2         5.16  13.95    24.03          27.48    1.89          2.19        2.21  
Panel 3         5.10  4.71    6.75           7.03    2.53          2.75        2.49  
Panel 4          5.02  10.64    17.86          20.09    1.87          2.25        2.14  
Average        5.01  7.61    12.29          13.57    2.25          2.55        2.36  
Bias           0.01  2.61        7.29           8.57    -2.75          -2.45        -2.64  
Std. Dev.        0.15  4.99    9.20           10.86    0.37          0.34        0.20  
 

2R  
Panel 1         0.96  0.94    0.94         0.94    0.95          0.95        0.95  
Panel 2         0.97  0.52    0.55          0.54    0.97          0.97        0.97  
Panel 3         0.96  0.92    0.92         0.92    0.95          0.95        0.95  
Panel 4          0.97  0.67    0.69          0.68    0.96          0.96        0.96  
Average        0.97  0.76    0.78          0.77    0.96          0.96        0.96  
 
Size of C. I. 
Panel 1         5.54  5.21    6.46          8.11    13.16         14.36        15.56  
Panel 2         5.37  4.88    6.34           8.55    13.73         13.78        14.98  
Panel 3         5.72  5.25    6.56          8.42    13.18         14.08        15.21  
Panel 4          5.50  4.98    6.64           8.77    13.59         13.80        14.81  
Average        5.53  5.08    6.50           8.46    13.42         14.01        15.14  
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______________________________________________________________________ 

TABLE 2 
Simulation II (Style Coefficients) 

_____________________________________________________________________ 
Panel I ( )05,04,47.03,48.02,05.01   

Measures      05.01       48.02    47.03   04   05    

______________________________________________________________________ 
RBSA    0.05  0.47                  0.47  0.01  0.01  
     m    smb         hml     tm      hm  

 
JS    0.96  
 
JS-TM    0.96           0.28 
        [-0.47  1.07] 
JS-HM     0.92            0.07 
          [-0.08  0.21]  
FF3     0.96  -0.09                  -0.01 
          [-0.14  -0.04]     [-0.11  0.1] 
 
FF3-TM     0.96  -0.09                  -0.01        -0.05 
          [-0.15  -0.04]     [-0.11  0.09]        [-0.83  0.75] 
 
FF3-HM     0.96  -0.09                  -0.01                0.01 
          [-0.14  -0.04]     [-0.11  0.09]         [-0.15  0.164] 
________________________________________________________________________ 
Panel II ( )47.05,48.04,03,02,05.01   

Measures      05.01       0.02    0.03   48.04   47.05    

______________________________________________________________________ 
RBSA    0.04  0.01                  0.01    0.48  0.46 
  
     m    smb        hml     tm      hm  

 
JS    0.92  
JS-TM    0.87           -3.8 
         [-4.57  -3.02] 
JS-HM     1.19            -0.6 
          [-0.75  -0.46]  
FF3     0.94  0.95                 0.04 
           [0.9     1]       [-0.07  0.14] 
FF3-TM     0.94  0.95                   0.04        -0.01 
           [0.9     1]   [-0.07  0.14]      [-0.9  0.7] 
FF3-HM     0.95  0.95                  0.03                -0.01 
          [0.9    1.01]   [-0.07  0.13]       [-0.17  0.15] 
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______________________________________________________________________ 
TABLE 2 (Continued) 

Simulation II (Style Coefficients) 
_____________________________________________________________________ 
Panel III ( )12.05,13.04,35.03,35.02,05.01   

Measures      05.01       35.02    35.03   13.04   12.05    

______________________________________________________________________ 
RBSA    0.05  0.34                  0.36   0.13  0.11  
     m    smb         hml     tm      hm  

 
JS    0.95  
JS-TM    0.94          -0.79 
        [-1.57  0.01] 
JS-HM     1            -0.11 
          [-0.25  0.04]  
FF3     0.95  0.18                   0 
          [0.13  0.24]     [-0.1  0.1] 
 
FF3-TM     0.96  0.18                   0                       -0.07 
          [0.13  0.24]     [-0.11  0.11]       [-0.82  0.66] 
 
FF3-HM     0.95  0.18                   0                        0 
          [0.13   0.24]       [-0.1  0.1]         [-0.15  0.15] 
________________________________________________________________________ 
Panel IV ( )35.05,35.04,12.03,13.02,05.01   

Measures      05.01       13.02    12.03   35.04   35.05    

______________________________________________________________________ 
RBSA    0.05  0.13                  0.12    0.35  0.35 
  
     m    smb        hml     tm      hm  

 
JS    0.93  
JS-TM    0.9           -2.7 
        [-3.44  -1.92] 
JS-HM     1.12            -0.42 
          [-0.58  -0.28]  
FF3     0.94  0.68                 0.03 
           [0.63     0.73]    [-0.08  0.13] 
FF3-TM     0.94  0.68                   0.03        -0.01 
           [0.62     0.73]    [-0.08  0.13]    [-0.87  0.68] 
FF3-HM     0.95  0.67                  -0.02                  0 
            [0.62      0.72]     [-0.08  0.12]      [-0.15  0.14] 
 


