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Abstract We introduce a multivariate GARCH-Copula model to describe joint dynamics of 
overnight and daytime returns for multiple assets. The conditional mean and variance of 
individual overnight and daytime returns depend on their previous realizations through a variant 
of GARCH specification, and two Student’s t copulas describe joint distributions of both returns 
respectively. We employ both constant and time-varying correlation matrices for the t copulas 
and with the time-varying case the dependence structure of both returns depends on their 
previous dependence structures through a DCC specification. We estimate the model by a two-
step procedure, where marginal distributions are estimated in the first step and copulas in the 
second. We apply our model to overnight and daytime returns of 15 funds of different types, and 
illustrate its applications in risk management and asset allocation. Our empirical results show 
(for most tested assets) higher means, lower variance, fatter tails for overnight returns than 
daytime returns. The comparison results of dependence between overnight and daytime returns 
are mixed. Daytime returns are significantly negatively correlated with previous overnight 
returns. Moreover, daytime returns depend on previous overnight returns in both conditional 
variance and correlation matrix (through a DCC specification). Most of our empirical findings 
are consistent with the asymmetric information argument in the market microstructure literature. 
With respect to econometric modelling, our results show a DCC specification for correlation 
matrices of t copulas significantly improves the fit of data and enables the model to account for 
time-varying dependence structure.  

JEL classification: C32, G12, G14. 

Key words: Overnight and daytime returns, GARCH-Copula models. 
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1. Introduction 

Modeling the dynamics of overnight and daytime returns is important in at least two aspects. 
First, a good description of overnight and daytime returns can help to test alternative theories on 
different features of market microstructure during the day and night. Second, from a 
practitioner’s point of view, many financial instruments (such as index options) are based on the 
opening prices of underlying assets. Thus, it is necessary to distinguish between overnight and 
daytime returns for risk management or asset allocation purposes. There is plenty of work 
documenting different empirical properties of overnight and daytime returns. Some show that the 
average overnight returns are statistically higher than average daytime returns, while others show 
higher average returns over trading periods than non-trading periods (see Cliff et al. (2008) and 
Keim & Stambaugh (1984)). Some show that daytime returns are statistically negatively 
correlated with previous overnight returns, while others show that the two returns are largely 
independent (see Gallo et al. (2001), Branch & Ma (2006) and Oldfield & Rogalski (1980)). The 
variance of daytime returns is significantly higher than that of overnight returns (see French & 
Roll (1986) and Lockwood & Linn (1990)). Overnight returns are more leptokurtic than daytime 
returns2 (see Masulis & Ng (1995)). Those empirical patterns also generate interest in proposing 
theoretical models to explain them (see Admati & Pfleiderer (1988, 1989) and Hong & Wang 
(2000)). 

To the best of our knowledge, current literature on this topic only deals with the univariate case 
and there is no work on modeling the joint dynamics of multiple assets. Our work attempts to fill 
this gap. First, we introduce a comprehensive model which can reasonably well capture key 
empirical aspects of both returns and can be easily implemented by practitioners. Second, by 
applying the model to the data, we expect to find some different features of the dependence 
structure between both returns. Moreover, we illustrate how the model can be effectively used 
for risk management or asset allocation purposes. 

With a GARCH-Copula framework, we can more flexibly construct the joint distribution of 
multiple returns. The dynamics of overnight and daytime returns for each asset are described by 
a GARCH process, where the conditional mean and variance depend on the previous realizations 
of both returns and innovations are described by Student’s t distributions. Then we use two 
Student’s t copulas to link overnight and daytime returns of multiple assets respectively. The 
constant correlation matrices in Student’s t copulas are assumed and estimated first, and then to 
describe the time-varying feature of dependence structure we implement a DCC (Dynamic 
Conditional Correlation) specification for Student’s t copulas. We estimate the model by a two-
step procedure, where the marginal distributions are estimated in the first step and the copulas in 
the second. 

We apply our model to the overnight and daytime returns of 15 funds of different types from 
September 21, 2006 to March 29, 2011. At the individual level, for most cases daytime returns 
depend on previous overnight returns negatively. The conditional variance of daytime returns is 
consistently higher than that of overnight returns. Almost all the ETFs have lower DoF 

                                                 
2 See Kang & Babbs (2010b) for a comprehensive empirical investigation. 
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parameters for overnight returns than for daytime returns, which is consistent with the observed 
higher kurtosis of overnight returns. In addition to their own lags, the conditional variance of 
overnight (daytime) returns has some degree of dependence on previous daytime (overnight) 
returns.  

With constant Student’s t copulas, the copula governing overnight returns has a lower DoF than 
that of daytime returns. The comparison of correlation matrices for the t copulas yield mixed 
patterns. Meanwhile, time-varying t copulas yield similar results. For most cases and time period 
(including financial crisis) we tested, overnight returns have significantly higher tail dependence 
patterns than daytime returns. Moreover, time-varying copula models show that the dependence 
structure of daytime returns depend on that of previous overnight returns. This adds to observed 
non-linear dependence between daytime and previous overnight returns. We believe most of our 
empirical findings are consistent with the asymmetric information argument in theoretical 
models such as Admati & Pfleiderer (1988, 1989). Moreover, our results show that a DCC 
specification for correlation matrices of t copulas significantly improves fit of data and enables 
the model to account for time-varying dependence structure.  

The rest of the paper is organized as follows. Section 2 introduces the multivariate GARCH-
Copula model and its estimation and simulation procedures. Section 3 applies the model to the 
overnight and daytime returns of 15 funds of different assets or sectors. Section 4 illustrates the 
applications of the model for risk management and asset allocation purposes. Section 5 
concludes. 

2. A multivariate GARCH-Copula model 

2.1. Individual returns 

We model individual returns using a variant of GARCH specification. Let , , , , ,[ ]i t i n t i d tR r r ′=  be 

overnight and daytime returns for asset i observed at the open and close respectively on day t. 
The individual returns for asset i are  

, ,0 , ,0 , , 1 , , 1 , , , , , , , ,, ,..., , , , ,... , .i n i d i n t i d t i n t i d t i n T i d Tr r r r r r r r− −  

We specify the conditional mean as 

 , , ,0 ,1 , , 1 ,2 , , 1 , , ,i n t i i i d t i i n t i n tr r rα α α η− −= + + +  (1) 

 , , ,0 ,1 , , ,2 , , 1 , , .i d t i i i n t i i d t i d tr r rβ β β η−= + + +  (2) 

where , ,i n tr  depends on previous daytime return , , 1i d tr −  and previous overnight return , , 1i n tr − , and 

similarly , ,i d tr  depends on , ,i n tr  and , , 1i d tr − . We specify residuals as 

 , , , , , , ,i n t i n t i n thη ε=  (3) 

 , , , , , , ,i d t i d t i d thη ε=  (4) 
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where , ,i n tε  and , ,i d tε  are i.i.d. innovations with zero mean and unitary variance respectively and 

are independent between each other at all times, and , ,i n th and , ,i d th are conditional variance 
described by the following equations. 

  2 2
, , ,0 ,1 , , 1 ,2 , , 1 ,3 , , 1,i n t i i i d t i i n t i i n th hθ θ η θ η θ− − −= + + +  (5) 

 2 2
, , ,0 ,1 , , ,2 , , 1 ,3 , , 1.i d t i i i n t i i d t i i d th hδ δ η δ η δ− −= + + +  (6) 

where we require , 0i jθ >  and , 0i jδ >  for 0,...,3j = , and the eigenvalues of the matrix 

,2 ,3 ,1

,1 ,2 ,3 ,1 ,2 ,2 ,3( ) ( )
i i i

i i i i i i i

θ θ θ
δ θ θ δ θ δ δ

+� �
� �+ + +� �

 are less than one in absolute values to ensure the stationarity 

of the squared errors. Those parameter restrictions guarantee conditional variances are always 
non-negative and squared residuals are stationary3. We assume that the innovations , ,i n tε  and 

, ,i d tε  have standardized Student’s t distribution as 

, , ,(0,1, )i n t i nSTε ν� , , , ,(0,1, )i d t i dSTε ν� , 

where ,i nν  and ,i dν  are degree-of-freedom (DoF) parameters and we have , ,, 2i n i dν ν >  to ensure 
the existence of second movements. 

It is worth noting that we can use a more sophisticated specification for marginal distributions of 
individual returns. For instance, we can include more explanatory variables in equations (1) and 
(2) to possibly better describe the conditional mean, include a GJR specification (see Glosten et 
al (1993)) in equations (5) and (6) to account for the asymmetric effect of stock returns on the 
conditional variance and specify a distribution with time-varying high-moment parameters (e.g. 
time-varying Hansen’s (1994) skewed t  distribution) for residual innovations. Nevertheless, we 
will focus more on modelling joint distributions here. As we believe the current setup describes 
the data reasonably well, we will leave those options for further research. 

2.2. Copulas 

After specifying marginal distributions of returns, we need two copula functions to link 
overnight and daytime returns respectively across all assets. To formulate the joint distribution of 
returns for k assets, we are facing the following multiple time series, 

 1,0 ,0 1, 1 , 1 1, , 1, ,,..., , ..., , ..., , ,..., ,..., ,..., .k t k t t k t T k TR R R R R R R R− −  

                                                 
3 A more general VARMA model for the vector of squared overnight and daytime returns can be proposed. The 
parameter restrictions will depend on the stationartiy and identification of the corresponding VARMA process. See 
Kang & Babbs (2010a). 
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Let tF , ,d tF  and ,n tF  be the conditional cumulative distribution function (c.d.f.) for 1, ,,...,t k tR R , 

1, , , ,,...,d t k d tr r , and 1, , , ,,...,n t k n tr r .  At each time t , the conditional distribution of 1, ,,...,t k tR R  is given 
as 

 1, , 1, 1 , 1 1,0 ,0 , 1, , , , , 1 , 1, , , , , 1( ,..., | ,..., ,..., ,..., ) ( ,..., | ) ( ,..., ),t t k t t k t k d t d t k d t d t n t n t k n t n tF R R R R R R F r r F r r− − − −= Ω Ω (7) 

where , 1 1, , , , 1, , 1 , , 1 1, ,0 , ,0 1, ,0 , ,0{ ,..., , ,..., ,..., ,..., , ,..., }d t n t k n t d t k d t d k d n k nr r r r r r r r− − −Ω =  and , 1 1, , 1{ ,...,n t d tr− −Ω =  

, , 1 1, , 1 , , 1 1, ,0 , ,0 1, ,0 , ,0, ,..., , ..., ,..., , ,..., }k d t n t k n t d k d n k nr r r r r r r− − − . Let , ,i d tF  and , ,i n tF , for 1,..., ,i k=  be the 

conditional c.d.f.’s for , ,i d tr  and , ,i n tr . Then the conditional joint distributions 

, 1, , , , , 1( ,..., | )d t d t k d t d tF r r −Ω  and , 1, , , , , 1( ,..., )n t n t k n t n tF r r −Ω  can be modelled using two copulas as, 

 1, , , , , 1 1, , , 1 , , , 1 , 1( ,..., ) ( ( ),..., ( ) ),d t k d t d t d d t d t k d t d t d tF r r C F r F r− − − −Ω = Ω Ω Ω  

 1, , , , , 1 1, , , 1 , , , 1 , 1( ,..., ) ( ( ),..., ( ) ),n t k n t n t n n t n t k n t n t n tF r r C F r F r− − − −Ω = Ω Ω Ω  

where nC  and dC are the two copula c.d.f.’s. It is worth noting that the copula function and 
marginal distributions are all conditional on the previous information set.  

There are many choices of copula functions for modelling the dependence structure of multiple 
variables. We use Student’s t copula in this paper. The c.d.f. of Student’s t copula is given by 

 1 1
1 , 1( ,..., ) ( ( ),..., ( )),k R v v kC u u T T u T uν

− −=  (8) 

where ,RT ν is the N -dimensional Student’s t distribution with correlation matrix R  and DoF 

parameter ν , and 1( )vT − ⋅ is the inverse of univariate standard Student’s t distribution4. The 
probability density function (p.d.f.) of Student’s t copula is  

1 1
, 1

1
1

1

( ( ),..., ( ))
( ,..., ) ,

( ( ))

R v v k
k k

v i
i

t T u T u
c u u

t T u

ν

ν

− −

−

=

=
∏

 

where , ( )Rt ν ⋅  is the density function of ,RT ν  and ( )tν ⋅ is the density of Tν , the standard Student’s t 
distribution. 

When using Student’s t copulas for both returns, we can assign constant or time-varying 
correlation matrices for both t copulas. As for the time-varying t copulas, we borrow the idea of 
DCC-GARCH models to make the two sets of correlation matrices depend on past realizations.  

                                                 
4 In contrast to the previous standardized Student’s t distribution, the standard Student’s t distribution here has 

variance as ( 2)ν ν − . 
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Let ( )1 1
, 1, , , ,( ),..., ( )

cn cncn t v n t v k n tT u T uς − − ′=  and ( )1 1
, 1, , , ,( ),..., ( )

cd cdcd t v d t v k d tT u T uς − − ′= according to (8) and ,n tQ  

and ,d tQ be the conditional covariance matrices of ,cn tς  and ,cd tς  respectively. The time-varying 

correlation matrices ,cn tR  and ,cd tR of t copulas are governed by the dynamics of ,n tQ  and ,d tQ as  

 , 0 1 , 1 , 1 2 , 1 , 1 3 , 1 4 , 1( ) ( ) ,n t cd t cd t cn t cn t d t n tQ Q Qπ ς ς π ς ς π π− − − − − −′ ′= Π + + + +  (9) 

 , 0 1 , , 2 , 1 , 1 3 , 4 , 1( ) ( ) ,d t cn t cn t cd t cd t n t d tQ Q Qψ ς ς ψ ς ς ψ ψ− − −′ ′= Ψ + + + +  (10) 

where 0iπ ≥  and 0iψ ≥ for 1,..., 4,i = and the eigenvalues of the matrix 

2 4 1 3

1 3 2 4 1 3 1 3 2 4

( )
( )( ) ( )( ) ( )

π π π π
ψ ψ ψ ψ π π ψ ψ ψ ψ

+ +� �
� �+ + + + + +� �

 are less than one in absolute values to 

ensure the system of (9) and (10) is valid and stationary5. With stationarity, it can be shown that  

 0 2 4 1 3(1 ( )) ( ) ,n dS Sπ π π πΠ = − + − +  (11) 

 0 2 4 1 3(1 ( )) ( ) ,d nS Sψ ψ ψ ψΨ = − + − +  (12) 

where nS  and dS  are the unconditional covariance of ,cn tς  and ,cd tς . Let , , ,i j n tq  and , , ,i j d tq  be the 

,i j -element of ,n tQ  and ,d tQ respectively, then the ,i j -elements of ,cn tR  and ,cd tR are given as 

 , , ,
, , ,

, , , , , ,

,i j n t
i j n t

i i n t j j n t

q

q q
ρ =  (13) 

 , , ,
, , ,

, , , , , ,

.i j d t
i j d t

i i d t j j d t

q

q q
ρ =  (14) 

With ,0n nQ S=  and ,0d dQ S= , the equations (9) to (14) completely govern the dynamics of the 

correlations matrices ,cn tR  and ,cd tR . For the correlation matrices to be positive definite, we have 
the following sufficient conditions. 

Proposition 1 In equations (9) to (14), if 

a) 0iπ ≥  and 0iψ ≥ for 1,..., 4,i =  

b) the eigenvalues of the matrix 2 4 1 3

1 3 2 4 1 3 1 3 2 4

( )
( )( ) ( )( ) ( )

π π π π
ψ ψ ψ ψ π π ψ ψ ψ ψ

+ +� �
� �+ + + + + +� �

 are 

less than one in absolute values,  
c) all eigenvalues of nS  and dS are strictly positive, 

d) all eigenvalues of 0Π  and 0Ψ are strictly positive, 

                                                 
5 See Appendix for derivation details. 
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then the correlations matrices ,cn tR  and ,cd tR  are positive definite. 

Proof: First, a) and b) guarantee the system is stationary and nS  and dS exist. With ,0n nQ S=  

and ,0d dQ S= , c) guarantees ,0nQ  and ,0dQ are positive definite. With a) and d), ,n tQ  and ,d tQ  are 
the sum of positive semi-definite and positive definite matrices with non-negative coefficients 
and therefore are positive definite for all t . Based on the proposition 1 in Engle & Sheppard 
(2001), we prove that ,cn tR  and ,cd tR  are positive definite. 

2.3. Estimation 

We estimate the whole density function by ML estimation procedures. Let F  and 0F  be the 
c.d.f.’s for 1,0 ,0 1, ,,..., , ..., , ...,k T k TR R R R  and 1,0 ,0,..., kR R . Using Bayes’ Theorem, the whole joint 
distribution of returns can be written as 

1,0 ,0 1, , 0 1,0 ,0 1, , 1, , , 1 , , , , , 1 , 1
1

1, , 1, , , 1 , , , , , 1 , 1

( ,..., ,..., ,..., ) ( ,..., ) ( ( ( | ),..., ( | ) | )

( ( ),..., ( ) )).

T

k T k T k d d t d t d t k d t k d t d t d t
t

n n t n t n t k n t k n t n t n t

F R R R R F R R C F r F r

C F r F r

− − −
=

− − −

= Ω Ω Ω

⋅ Ω Ω Ω

∏

 

Correspondingly, the joint density of returns can be written as 

 
1,0 ,0 1, , 0 1,0 ,0 1, , 1, , , , , , , , , ,

1 1

1, , 1, , , , , , , , 1, ,
1

( ,..., ,..., ,..., ) ( ,..., ) ( ( ( ),..., ( )) ( )

( ( ),..., ( )) ( )),

T k

k T k T k d d t d t k d t k d t i d t i d t
t i

k

n n t n t k n t k n t i n t n t
i

f R R R R f R R c F r F r f r

c F r F r f r

= =

=

=

⋅

∏ ∏

∏
(15)  

where , 1d t −Ω and , 1n t−Ω  are suppressed for notation convenience, 0f , , ,i d tf  and , ,i n tf  are the 

densities for 0F , , ,i d tF  and , ,i n tF ,  and nc  and dc  are the two copula densities for overnight and 
daytime returns respectively. From equation (15), we can continue to write the density as 

 

1, , , , , ,

1, , , , , ,

1,0 ,0 1, , 0 1,0 ,0 1, , , , , ,
1 1 , ,

1, , , , , ,
1 , ,

1
( ,..., ,..., ,..., ) ( ,..., ) ( ( ( ),..., ( )) ( )

1
( ( ),..., ( )) ( ) ),

d t k d t i d t

n t k n t i n t

T k

k T k T k d d t k d t i d t
t i i d t

k

n n t k n t i n t
i i n t

f R R R R f R R c F F f
h

c F F f
h

ε ε ε

ε ε ε

ε ε ε

ε ε ε

= =

=

= ∏ ∏

∏
 (16) 

where 
, ,i d t

Fε and 
, ,i n t

Fε  are the c.d.f.’s for , ,i d tε  and , ,i n tε , and 
, ,i d t

fε  and 
, ,i n t

fε  are corresponding 

densities. 
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Let 1{ , , ,..., }cn cd kθ θ θ θΘ = be a set of parameters for the two copula densities nc  and dc , and ,i tR  

for 1,...,i k=  respectively. Omitting the first term 0 1,0 ,0( ,..., )kf R R , we can write the log-
likelihood as 

 
1, , , , 1, , , ,

, , , ,

1, , , , 1, , , ,
1 1

, , , ,
1 1 1 1, , , ,

( ) log ( ( ),..., ( )) log ( ( ),..., ( ))

1 1
log ( ) log ( ) .

d t N d t n t k n t

i d t i n t

T T

d d t k d t n n t k n t
t t

k T k T

i d t i n t
i t i ti d t i n t

L c F F c F F

f f
h h

ε ε ε ε

ε ε

ε ε ε ε

ε ε

= =

= = = =

Θ = +

+ +

� �

�� ��
 (17) 

To estimate all the parameters simultaneously often leads to convergence problem of maximizing 
(17). Therefore, we maximize the whole log-likehihood by a two-step procedure. First, we 
estimate the marginal distribution of each asset. For asset i , the log-likelihood is 

 
, , , ,, , , ,

1 1, , , ,

1 1
( ) log ( ) log ( ) .

i d t i n t

T T

i i d t i n t
t ti d t i n t

L f f
h hε εθ ε ε

= =

= +� �  (18) 

To further facilitate the estimation, we first estimate the conditional mean in equations (1) and 
(2) by ordinary least squares (OLS). Then with estimated OLS residuals, we can estimate the 
variance equations (5) and (6) by maximizing (18). The specific log-likehood becomes 

, , ,0 ,1 , , 1 ,2 , , 1 , , ,0 ,1 , , ,2 , , 1
, ,

1 1, , , ,

1 1, , , ,

ˆ ˆ ˆˆ ˆ ˆ
log ( | ) log ( | )

1 1
log log ,

T T
i n t i i i d t i i n t i d t i i i n t i i d t

ST i n ST i d
t ti n t i d t

T T

t ti n t i d t

r r r r r r
L f f

h h

h h

α α α β β β
ν ν− − −

= =

= =

− − − − − −
= +

+ +

� �

� �

where STf  denotes the density of standardized Student’s t distribution. With all the marginal 
distributions being estimated, the only component left out in (17) is the copula part. With 
estimated marginal distribution parameters, we can estimate the two copulas by maximizing 

 1, , , , 1, , , ,
1 1

ˆ ˆ ˆ ˆ( , ) log ( ( ),..., ( )) log ( ( ),..., ( )),
T T

cn cd d d t k d t n n t k n t
t t

L c F F c F Fθ θ ε ε ε ε
= =

= +� �  (19) 

where ˆ ( )F ⋅ is the estimated c.d.f. for each innovation. Whether the maximization of (19) is easy 
or not depends on the specific copula functions. With normal copulas, we can derive analytical 
ML estimates very easily. With Student’s t copulas, however, the parameters cnθ  and cdθ  consist 
of correlation matrices cnR  and cdR , and the DoF parameters cnν  and cdν , and there is no easy 
analytical solution for  maximizing (19). To smoothly solve this maximization problem, with 

( )1 1
, 1, , , ,( ),..., ( )

cn cncn t v n t v k n tT u T uς − − ′=  and ( )1 1
, 1, , , ,( ),..., ( )

cd cdcd t v d t v k d tT u T uς − − ′= , we assign ˆ
cnR  and ˆ

cdR  as 

the sample correlation matrices of ,cn tς  and ,cd tς . ˆ
cnR  and ˆ

cdR  are functions of DoF parameters 

cnν  and cdν . Therefore, we can plug ˆ
cnR  and ˆ

cdR  into (19) and solve the maximization problem 
in terms of cnν  and cdν . Furthermore, as parameters for the two copulas are separate, we can 
maximize the two components in (19) separately to solve for cnν  and cdν respectively. 
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To estimate the time-varying t copula, we still maximize the log-likelihood as in (19) except that 
the time-varying t copulas are used. To reduce the number of parameters to directly estimate, we 
express the time-varying correlation matrices ,cn tR  and ,cd tR  as functions of DoF parameters cnν  

and cdν as in the above constant copula case.  Specifically, with given cnν  and cdν , we have the 

estimated unconditional covariance of ,cn tς  and ,cd tς  as ˆ
nS  and ˆ

dS , and we set the initial ,0nQ  

and ,0dQ equal to ˆ
nS  and ˆ

dS  respectively. Equations (9) to (14) completely describes the 

dynamics of the correlation matrices ,cn tR  and ,cd tR . Then all the parameters to estimate are iπ , 

iω  for 1,..., 4,i = cnν  and cdν , and the maximization is conducted with the corresponding 
restrictions. 

Generally, this two-step estimation procedure is called inference for the margins (IFM) method. 
Joe (1997) shows that under regular conditions the IFM estimator is consistent and has the 
property of asymptotic normality and Patton (2006) also shows that this two-step method yields 
asymptotically normal parameter estimates. 

2.4. Density forecast and simulations 

With parameter estimates, we can forecast the joint density and then simulate future overnight 
and daytime returns. Specifically, with estimated parameters Θ̂  and , 1n t−Ω , we can sequentially 

forecast 1, , , , , 1( ,..., )n t k n t n tf r r −Ω , 1, , , , , 1( ,..., | )d t k d t d tf r r −Ω  and then 1, , , , 1, , , ,( ,..., , ,...,d t k d t n t k n tf r r r r

, 1)n t −Ω . Accordingly, we can sequentially simulate 1, , , ,{ ,..., }n t k n tr r and 1, , , ,{ ,..., }d t k d tr r . With ĉnθ , 

we first simulate the copula nC  to get a simulated vector 1{ ,..., }ku u� � . Using estimated GARCH 

parameters 1̂
ˆ,..., kθ θ ,  and equations (1), (3) and (5), we can back out 1, , , ,{ ,..., }n t k n tr r� � .  Finally, we 

can use ĉdθ to simulate copula dC  and then back out 1, , , ,{ ,..., }d t k d tr r� � . 

3. An empirical investigation 

3.1. Data 

We apply our model to returns of 15 funds of different types from September 21, 2006 to March 
29, 2011. The 15 symbols are XLY, XLP, XLE, XLF, XLV, XLI, XLB, XLK, XLU, AGG, 
GSG, USO, RWR, DBV and FXE The first nine symbols are SPDR ETFs representing the 
sectors of Consumer Discretionary, Consumer Staples, Energy, Financial, Healthcare, Industrial, 
Materials, Technology and Utilities. The remaining six symbols represent iShares Lehman 
Aggregate Bond ETF, iShares S&P GSCI Commodity-Indexed ETF, United States Oil Fund LP 
ETF, SPDR DJ Wilshire REIT ETF, PowerShares DB G10 Currency Harvest Fund, and 
Currency Shares Euro Trust.   

Figure 1 plots overnight log returns of the fifteen funds and figure 2 plots the daytime log 
returns. The time period we choose for empirical applications features an unprecedented high 
volatility due to the financial crisis. The open and close prices and dividend payments are 
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directly downloaded from http://finance.yahoo.com/. We calculate log overnight and daytime 
returns based on the open and close prices and dividend payments. 

Table 1 reports the descriptive statistics (mean, standard deviation, Skewness and Kurtosis) for 
overnight and daytime returns of 15 funds of different types from September 21, 2006 to March 
29, 2011. We find that overnight returns are all positive and have consistently higher averages 
than daytime returns except USO, DBV and FXE. Daytime returns have significantly higher 
standard deviations than overnight returns except the two currency funds DBV and FXE. 
Skewness for both returns has mixed signs. Kurtosis is greater than three for both returns and 
overnight returns tend to have higher Kurtosis except the currency fund FXE. It is not difficult to 
understand why FXE has higher Kurtosis for its daytime returns as it is a currency fund based on 
Euros. 

<Insert Figures 1 and 2, and Table1 here.> 

3.2. Empirical results 

Table 2 reports the OLS estimates of conditional mean parameters for each fund. The values in 
italics are standard errors. Estimates in bold are statistically significant at a 5% confidence level. 
Among the 15 funds, not many have overnight returns which significantly depend on previous 
daytime and overnight returns. For significant estimates, the signs are mixed. In contrast, most 
constant terms for daytime returns are not statistically significant. More funds have daytime 
returns which statistically depend on previous overnight returns negatively.  

Table 3 reports the GARCH estimates of marginal distributions for each fund. The values in 
italics are robust standard errors. Estimates in bold are statistically significant at a 5% confidence 
level. Most estimates are statistically significant. Except FXE, we find all the funds have lower 
DoF parameters for overnight returns than for daytime returns, which is consistent with the 
observed higher Kurtosis of overnight returns. Figure 3 plots the estimated conditional variance 
of overnight and daytime returns for each fund. We find that the daytime returns have 
consistently higher conditional volatility than overnight returns except AGG and FXE. 

Table 4 reports the estimates (from the constant correlation model) for the two constant Student’s 
t copulas which govern the dependence structure of overnight and daytime returns respectively. 
We find that overnight returns have a bit higher (for most cases) values of correlation matrix than 
daytime returns6, while daytime returns have a higher DoF parameter than overnight returns. The 
higher correlation matrix of the t copulas for daytime returns generally indicate that daytime 
returns are more correlated than overnight returns, even though correlation matrix in t copulas 

                                                 
6 It is worth noting that in another estimation exercise which is not reported here, we apply the model to a relatively 
quieter time period (March 11, 2003 and July 19, 2007) with the nine SPDR ETFs and overnight returns tend to 
have lower values of correlation matrix than daytime returns. This indicates that the comparison results of the 
dependence structure between overnight and daytime returns depends on both the assets and time period under 
investigation. 
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seldom exactly equals to correlation matrix of underlying returns7. We also report the log-
likelihood of the copula components from the estimation. 

Table 5 reports the estimates for the two time-varying Student’s t copulas. We first observe that 
the time-varying t copula yields significantly higher log-likelihood than its constant case, 
indicating a better fit of data. Estimates of the parameters in equations (9) and (10) suggest the 
dependence structure of overnight returns has significant influence on that of the following 
daytime returns while the dependence of overnight returns appears to be mainly determined by 
its previous dependence structure. This observation adds to higher moment dependence between 
daytime and previous overnight returns in a multivariate setting. Similar with the constant 
copulas, overnight returns have a lower DoF parameter than daytime returns. Figure 4 plots time-
varying conditional correlation parameters of the t copulas for four selected fund pairs. We 
observe that for three pairs the correlation parameter of daytime returns is higher than that of 
overnight returns. Figure 5 plots the conditional TDC for four selected pairs, where the 
comparison patterns are mixed. We observe that for all the 4 pairs the TDC of overnight returns 
is significantly higher than that of daytime returns.  

In summary, our empirical results show that for most cases overnight returns have higher mean, 
lower variance and higher kurtosis than daytime returns. In terms of dependence structure, 
overnight returns generally have relatively higher correlations than daytime returns. Moreover, 
daytime returns significantly depend on previous overnight returns in first and second univariate 
moments and dependence structure. We believe that most of our observations are consistent with 
the asymmetric information argument in theoretical work such as Admati & Pfleiderer (1988, 
1989).    

<Insert Tables 2, 3, 4 and 5, and Figures 3, 4 and 5 here.> 

4. Applications 

4.1. Risk management 

Facing overnight and daytime returns, the typical task for risk managers is to forecast the risk 
measures of portfolios in the following market openings and closings.  Specifically, at the end of 
time 1t −  and with an information set , 1n t−Ω , risk managers are concerned with the return 

distribution of a portfolio at the market opening of time t  and subsequently at the market closing 
of time t . Let , , 1, , , ,( ,..., )n t n t n t k n tP g r r=  and , , 1, , , ,( ,..., )d t d t d t k d tP g r r=  be the portfolio returns at the 

market opening and closing of time t  respectively. To forecast the risk measures of ,n tP , we need 
to specify the conditional density functions 

 1, , , , , 1( ,..., )n t k n t n tf r r −Ω  (20) 

and 

                                                 
7 They are equal when DoF parameter of the marginal distribution of each asset equals to that of the copulas. 
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 1, , , , 1, , , , , 1ˆ ˆ( ,..., | ,..., , )d t k d t d t k d t n tf r r r r −Ω  (21) 

which is a function of both overnight and daytime returns of underlying assets at time t .  From 
section 2.4, we can forecast 1, , , ,, ...,n t k n tr r  and 1, , , ,,...,d t k d tr r  sequentially. Accordingly, the value-at-
risk (VaR) and expected shortfall (ES) can be calculated based on simulated returns. 

Let us assume the portfolio returns at the market opening and closing of time t  as 

, 1, ,
1

1 k

n t n t
i

P r
k =

= �  and , 1, ,
1

1 k

d t d t
i

P r
k =

= � and conduct a simple exercise of calculating the VaR and ES 

of the portfolio. We use the whole period of data (from September 21, 2006 to March 29, 2011) 
to forecast the conditional density in (20) and simulate 1000 samples for 1, , , ,, ...,n t k n tr r first. Then 

for each scenario of 1, , , ,, ...,n t k n tr r , we simulate 100 samples for 1, , , ,,...,d t k d tr r  based on the 
forecasted conditional density in (21). Accordingly, the VaR and ES are calculated based on the 
1000 samples for 1, , , ,, ...,n t k n tr r  and 100000 samples for 1, , , ,,...,d t k d tr r  respectively. The VaR and ES 
are calculated in Table 6. 

<Insert Table 6 here.> 

4.2. Asset allocation 

As a simple example of asset allocation, investors solve a one-period investment problem, 
allocate their wealth among risk-free and risky assets at the beginning of overnight and daytime 
periods respectively and maximize their one-period expected utility. Let , , 1, , , ,( ,..., )n t n t n t k n tW w r r=
and , , 1, , , ,( ,..., )d t d t d t k d tW w r r= be the wealth at the end of overnight and daytime periods of time t . 
The investor maximizes the two expected utilities as 

 , 1, , , , , 1 1, , , ,... ( ) ( ,..., ) ... ,n t n t k n t n t n t k n tU W f r r dr dr−Ω� �  (22) 

and  

 , 1, , , , 1, , , , , 1 1, , , , , 1 1, , , , 1, , , ,... ( ) ( ,..., ,..., , ) ( ,..., ) ... ... ,d t d t k d t n t k n t n t n t k n t n t d t k d t n t k n tU W f r r r r f r r dr dr dr dr− −Ω Ω� � (23) 

where ( )U ⋅  is a certain utility function. Usually, the maximization problem is based on the 
numerical simulations of the expected utility. 

As a simple illustration, we assume investors have a CRRA utility function as 

 

1

0 1
( ) 1

ln 1

AW
A and A

U W A
W A

−	
> ≠
= −�


 =�

 

where A  is a CRRA parameter and W  is wealth. Let , ,i n tq  and , ,i d tq  be weights for the i -th asset 

during the overnight and daytime periods. We assume , 1, , 1, , , , , ,1 ...n t n t n t k n t k n tw r q r q= + + +  and 

, 1, , 1, , , , , ,1 ...d t d t d t k d t k d tw r q r q= + + +  where risk-free rate is zero and , , , ,0, 0i n t i d tq q> > , , ,
1

1
N

i n t
i

q
=

<�
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and , ,
1

1
N

i d t
i

q
=

<� . We can maximize the expected utilities in (22) and (23) respectively. Based on 

simulated samples for 1, , , ,, ...,n t k n tr r  and 1, , , ,,...,d t k d tr r  (as in section 4.1), the optimal portfolio 
weights for overnight and daytime periods are reported in Table 7. We observe that two funds 
dominate the portfolio for overnight and daytime respectively. 

<Insert Table 7 here.> 

5. Conclusion 

We introduce a multivariate GARCH-Copula model to describe joint dynamics of both overnight 
and daytime returns of multiple assets. The conditional mean and variance of individual returns 
depend on their previous realizations, and two (constant and time-varying) Student’s t copulas 
link both returns respectively. We apply the model to 15 funds of different types and illustrate its 
use in risk management and asset allocation. 

There are several possibilities for extensions. First, we can include more explanatory economic 
variables or factors in the system to better predict joint density. Second, we can investigate how 
to estimate the model by a Bayesian approach. Finally, we can test the model’s performance in 
an out-of-sample manner with more financial applications. We leave those possibilities for future 
research. 
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Appendix 
 
Let , 1 , 1 , 1d t d t d tς ς− − −′Ε =  and , 1 , 1 , 1n t n t n tς ς− − −′Ε = , we can write equations (9) and (10) as 

 , 0 1 3 , 1 2 4 , 1 , 3 , 1 4 , 1( ) ( ) ,n t d t n t n t d t n tV V Vπ π π π π π− − − −Ε = Π + + Ε + + Ε + − −  (24) 

 , 0 1 3 , 2 4 , 1 , 3 , 4 , 1( ) ( ) ,d t n t d t d t n t d tV V Vψ ψ ψ ψ ψ ψ− −Ε = Ψ + + Ε + + Ε + − −  (25) 
where 

 , , ,E ,n t n t n tV Q= −  (26) 

 , , ,E .d t d t d tV Q= −  (27) 
We can write equations (24) and (25) in block matrices as 

 

, , 1 ,0 2 4 1 3

, , 1 ,1 3 0 32 4

, 14 3

, 14

1 0 1 0

( ) 1 10

.
0

n t n t n t

d t d t d t

n t

d t

V

V

V

V

π π π π
ψ ψ ψψ ψ

π π
ψ

−

−

−

−

Ε ΕΠ + +� � � � � �� � � � � �� �
= + +� � � � � �� � � � � �� �Ε Ε− + Ψ −+� �� � � � � �� � � � � �

− − � �� �
+ � �� �−� �� �

 (28) 

Accordingly, we have 

 

, , 10 2 4 1 3

, , 10 1 3 0 1 3 2 4 1 3 1 3 2 4

, , 14 3

, , 11 3 3 4 1 3 3 1 3 4

( )

( ) ( )( ) ( )( ) ( )

1 0
.

( ) 1 ( ) ( )

n t n t

d t d t

n t n t

d t d t

V V

V V

π π π π
ψ ψ ψ ψ ψ ψ π π ψ ψ ψ ψ

π π
ψ ψ ψ π ψ ψ π ψ ψ ψ

−

−

−

−

Ε ΕΠ + +� � � �� � � �
= +� � � �� � � �Ε ΕΨ + + Ψ + + + + + +� � � �� � � �

− −� � � �� � � �
+ +� � � �� � � �+ − − + − + −� � � �� � � �

(29) 

The above system is a VARMA(1,1) process and we require the eigenvalues of the matrix 

2 4 1 3

1 3 2 4 1 3 1 3 2 4

( )
( )( ) ( )( ) ( )

π π π π
ψ ψ ψ ψ π π ψ ψ ψ ψ

+ +� �
� �+ + + + + +� �

 be less than one in absolute values for 

stationarity. Under stationarity, we can take expectations on both sides of (28) and with 
,( )n tE V = 0  and ,( )d tE V = 0 ,  we have 

 0 2 4 1 3(1 ( )) ( ) ,n dS Sπ π π πΠ = − + − +   

 0 2 4 1 3(1 ( )) ( ) ,d nS Sψ ψ ψ ψΨ = − + − +   

where nS  and dS  are the unconditional covariance of ,cn tς  and ,cd tς . 
 
 
 
 
 
 
  



                                                                                      

16 
 

Reference 

Admati, Anat R, and Paul Pfleiderer. "A Theory of Intraday Patterns: Volume and Price 
Variability." Review of Financial Studies 1 (1988): 3-40. 

Admati, Anat R, and Paul Pfleiderer. "Divide and Conquer: A Theory of Intraday and Day-of-
the-Week Mean Effects." Review of Financial Studies 2 (1989): 189-223. 

Branch, Ben S, and Aixin Ma. "The Overnight Return, One More Anomaly." (Available at 
SSRN: http://ssrn.com/abstract=937997) 9 2006. 

Cliff, Michael T, Michael J Cooper, and Huseyin Gulen. "Return Differences between Trading 
and Non-Trading Hours: Like Night and Day." Available at SSRN: 
http://ssrn.com/abstract=1004081, September 2008. 

Engle, Robert F, and Kevin Sheppard. "Theoretical and Empirical Properties of Dynamic 
Conditional Correlation Multivariate GARCH." University of California at San Diego, 
Economics Working Paper Series, 2001. 

French, Kenneth R, and Richard Roll. "Stock return variances: The arrival of information and the 
reaction of traders." Journal of Financial Economics 17 (1986): 5-26. 

Gallo, Giampiero, Yongmiao Hong, and Tae-Hwy Lee. "Modeling the Impact of Overnight 
Surprises on Intra-daily Stock Returns." Proceedings for Business and Economic Statistics. 
American Statistical Association, 2001. 

Glosten, Lawrence R, Ravi Jagannathan, and David E Runkle. "On the Relation between the 
Expected Value and the Volatility of the Nominal Excess Return on Stocks." Journal of Finance 
48, no. 5 (1993): 1779-1801. 

Hansen, Bruce E. "Autoregressive Conditional Density Estimation." International Economic 
Review 35, no. 3 (August 1994): 705-730. 

Hong, Harrison, and Jiang Wang. "Trading and Returns under Periodic Market Closures." 
Journal of Finance 55 (2000): 297-354. 

Joe, Harry. Multivariate Models and Dependence Concepts. London: Chapman and Hall, 1997. 

Kang, Long, and Simon H Babbs. "Overnight and Daytime Returns: an Empirical Investigation." 
Working paper, 2010. 

Kang, Long, and Simon H Babbs. "Tail Dependence of Major U.S. Stocks." Edited by A 
Jalilvand and T Malliaris. Risk Management and Corporate Governance, 2010. 

Keim, Donald, and Robert Stambaugh. "A Further Investigation of Weekend Effect in Stock 
Returns." Journal of Finance 39 (1984): 819-835. 

Lockwood, Larry J, and Scott C Linn. "An Examination of Stock Market Return Volatility 
during Overnight and Intraday Periods, 1964-1989." Journal of Finance 45 (1990): 591-601. 



                                                                                    

17 
 

Masulis, Ronald W, and Victor K Ng. "Overnight and Daytime Stock-Return Dynamics on the 
London Stock Exchange: the Impacts of "Big Bang" and the 1987 Stock-Market Crash." Journal 
of Business & Economic Statistics 13, no. 4 (October 1995). 

Oldfield, George S, and Richard J Rogalski. "A Theory of Common Stock Returns over Trading 
and Non-Trading Periods." Journal of Finance 35 (1980): 729-751. 

Patton, Andrew J. "Estimation of Copula Models for Time Series of Possibly Different Lengths." 
Journal of Applied Econometrics 21, no. 2 (2006): 147-173. 

 

 
 

 

 
  



                                                                                      

18 
 

Figures and Tables 

 

Figure 1 This figure plots the overnight log returns of 15 funds of different types from September 21, 2006 to 
March 29, 2011. The time period includes an unprecedented high volatility due to the financial crisis. In this paper, 
we choose this period for applying our copula model to overnight and daytime returns. 

 

Overnight log returns
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Figure 2 This figure plots the daytime log returns of 15 funds of different types from September 21, 2006 to March 
29, 2011. The time period includes an unprecedented high volatility due to the financial crisis. In this paper, we 
choose this period for applying our copula model to overnight and daytime returns. 

 

XLY XLP XLE XLF XLV XLI XLB XLK XLU AGG GSG USO RWR DBV FXE 

Overnight Mean 0.0005 0.0004 0.0003 0.0003 0.0002 0.0006 0.0006 0.0005 0.0005 0.0003 0.0002 -0.0005 0.0001 -0.0005 -0.000004 

Std. Dev. 0.011 0.008 0.012 0.017 0.008 0.011 0.011 0.010 0.008 0.003 0.012 0.016 0.013 0.009 0.005 

Skewness 0.297 0.013 -1.113 1.568 0.466 0.028 -0.528 -1.783 -0.323 -1.752 -0.657 -0.517 -0.034 -0.842 -0.306 

Kurtosis 19.452 26.746 16.356 22.327 15.621 13.516 12.813 28.180 24.670 42.560 6.240 6.806 18.010 14.303 4.709 

Daytime Mean -0.0004 -0.00022 0.0002 -0.0009 -0.0001 -0.0004 -0.0003 -0.0003 -0.0005 -0.0001 -0.0003 0.0002 -0.0001 0.0005 0.0001 

Std. Dev. 0.017 0.010 0.019 0.026 0.011 0.015 0.017 0.014 0.013 0.003 0.014 0.019 0.029 0.008 0.004 

Skewness -0.431 -0.791 -0.761 -0.069 -1.054 -0.616 -0.429 0.098 -0.070 -1.282 -0.075 0.061 -0.138 0.286 0.517 

Kurtosis 9.991 11.857 11.800 9.845 14.850 7.274 6.865 10.778 10.628 17.798 4.809 6.471 10.073 13.687 8.745 

Table 1 This table reports the descriptive statistics (mean, standard deviation, Skewness and Kurtosis) for overnight 
and daytime returns of 15 funds of different types from September 21, 2006 to March 29, 2011. We find overnight 
returns are all positive and consistently higher than daytime returns except USO, DBV and FXE. Daytime returns 
have significantly higher standard deviations than overnight returns except the two currency funds DBV and FXE. 
Skewness for both returns has mixed signs. Kurtosis is greater than three for both returns and overnight returns tend 
to have higher Kurtosis except currency funds FXE. XLY, XLP, XLE, XLF, XLV, XLI, XLB, XLK, and XLU 
represent SPDR ETFs of the sectors for Consumer Discretionary, Consumer Staples, Energy, Financial, Healthcare, 
Industrial, Materials, Technology and Utilities. AGG, GSG, USO, RWR, DBV and FXE represent iShares Lehman 
Aggregate Bond ETF, iShares S&P GSCI Commodity-Indexed ETF, United States Oil Fund LP ETF, SPDR DJ 
Wilshire REIT ETF, PowerShares DB G10 Currency Harvest Fund, and Currency Shares Euro Trust.  
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XLY XLP XLE XLF XLV XLI XLB XLK XLU AGG GSG USO RWR DBV FXE 

Overnight ,0iα
0.0005 0.0004 0.0003 0.0004 0.0002 0.0006 0.0006 0.0005 0.0005 0.0003 0.0002 -0.0005 0.0001 -0.0004 -0.00001 

0.0003 0.0002 0.0004 0.0005 0.0002 0.0003 0.0003 0.0003 0.0002 0.0001 0.0004 0.0005 0.0004 0.0003 0.0002 

,1iα 0.026 0.028 -0.009 0.023 0.029 0.035 0.051 -0.019 -0.010 -0.171 -0.032 -0.028 -0.013 -0.190 0.029 

0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.03 0.04 

,2iα -0.02 0.05 -0.09 -0.09 -0.02 -0.03 -0.002 -0.02 0.02 -0.07 -0.04 -0.05 -0.11 -0.05 0.03 

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Daytime ,0iβ
-0.0002 -0.00002 0.0001 -0.0010 -0.0001 -0.0003 -0.0004 -0.0002 -0.0004 -0.0002 -0.0003 0.0002 -0.0002 0.0004 0.0001 

0.0005 0.0003 0.0006 0.0008 0.0003 0.0004 0.0005 0.0004 0.0004 0.0001 0.0004 0.0006 0.0008 0.0002 0.0001 

,1iβ -0.31 -0.49 0.18 -0.05 -0.33 -0.11 0.01 -0.20 -0.19 0.16 0.01 0.01 0.04 -0.17 0.05 

0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.06 0.03 0.02 

,2iβ
0.01 -0.10 -0.13 -0.15 -0.04 -0.05 -0.09 -0.07 -0.10 -0.03 -0.05 -0.02 -0.21 0.02 0.03 

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Table 2 This table reports the OLS estimates of conditional mean parameters for each fund. The values in italics are 
standard errors. Estimates in bold are statistically significant at a 5% confidence level. Among the 15 funds, not 
many have overnight returns which significantly depend on previous daytime and overnight returns. For significant 
estimates, the signs are mixed. In contrast, most constant terms for daytime returns are not statistically significant. 
More funds have daytime returns which statistically depend on previous overnight returns negatively.  
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XLY XLP XLE XLF XLV XLI XLB XLK XLU AGG GSG USO RWR DBV FXE 

Overnight ,0iθ  
3.50E-07 8.79E-07 8.87E-07 1.13E-07 4.79E-07 5.39E-07 1.44E-06 1.79E-06 1.33E-06 4.94E-07 1.05E-06 1.11E-06 3.41E-06 2.04E-06 2.23E-07 

,1iθ  0.03 0.14 0.03 0.05 0.04 0.06 0.05 0.07 0.07 0.13 0.01 0.01 0.02 0.14 0.05 

0.01 0.09 0.01 0.01 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.01 0.03 0.02 

,2iθ  0.09 0.11 0.09 0.07 0.07 0.05 0.05 0.03 0.08 0.09 0.06 0.05 0.08 0.09 0.03 

0.03 0.05 0.02 0.02 0.02 0.03 0.02 0.04 0.03 0.04 0.01 0.02 0.05 0.03 0.01 

,3iθ  0.84 0.71 0.83 0.82 0.84 0.83 0.82 0.82 0.73 0.66 0.92 0.93 0.80 0.76 0.93 

0.04 0.15 0.04 0.02 0.04 0.04 0.04 0.03 0.09 0.07 0.02 0.01 0.04 0.06 0.02 

,i nν  5.44 4.51 9.56 5.52 4.85 6.05 5.72 4.90 4.05 7.94 7.13 7.24 4.24 5.62 15.35 

0.63 0.43 2.27 0.63 0.55 0.82 0.71 0.51 0.32 1.69 1.32 1.42 0.37 0.66 6.56 

Daily ,0iδ  
2.13E-06 1.38E-06 2.71E-06 5.90E-06 3.74E-06 2.30E-06 2.97E-06 2.66E-06 2.29E-06 2.07E-11 3.66E-06 5.58E-06 5.61E-06 7.88E-07 3.62E-08 

,1iδ  0.14 0.07 0.04 0.29 0.18 0.08 0.08 0.13 0.12 0.04 0.05 0.03 0.23 0.15 0.02 

0.04 0.02 0.03 0.08 0.09 0.03 0.04 0.05 0.07 0.01 0.04 0.02 0.09 0.04 0.01 

,2iδ  0.06 0.07 0.08 0.14 0.12 0.08 0.06 0.10 0.10 0.04 0.06 0.06 0.14 0.13 0.04 

0.01 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.03 0.02 0.03 0.03 0.02 

,3iδ  0.86 0.86 0.89 0.73 0.76 0.86 0.90 0.82 0.84 0.93 0.89 0.91 0.81 0.69 0.92 

0.03 0.03 0.03 0.05 0.07 0.03 0.04 0.04 0.05 0.00 0.07 0.04 0.04 0.06 0.02 

,i dν  13.20 12.96 13.39 13.21 7.87 13.73 10.70 11.90 8.54 8.05 27.63 40.05 16.27 6.27 7.96 

4.58 3.87 4.65 3.81 1.48 5.02 2.75 3.58 1.68 1.49 27.26 85.72 8.84 0.93 1.70 

Table 3 This table reports the GARCH estimates of marginal distributions for each fund. The values in italics are 
robust standard errors. Estimates in bold are statistically significant at a 5% confidence level. Except FXE, we find 
all the funds have lower DoF parameters for overnight returns than for daytime returns, which is consistent with the 
observed higher Kurtosis of overnight returns.  
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Figure 3  This figure plots the estimated conditional variance of overnight and daytime returns for each fund. We find that the daytime returns have consistently higher 
conditional volatility than overnight returns except AGG and FXE.
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Overnight 

cnR  XLY XLP XLE XLF XLV XLI XLB XLK XLU AGG GSG USO RWR DBV FXE 

XLY 

XLP 0.66 

XLE 0.65 0.59 

XLF 0.77 0.65 0.69 

XLV 0.65 0.59 0.56 0.66 

XLI 0.77 0.67 0.67 0.76 0.68 

XLB 0.72 0.65 0.75 0.76 0.63 0.73 

XLK 0.75 0.66 0.67 0.74 0.64 0.75 0.74 

XLU 0.65 0.62 0.57 0.66 0.59 0.67 0.67 0.64 

AGG -0.27 -0.23 -0.22 -0.26 -0.19 -0.24 -0.22 -0.27 -0.23 

GSG 0.38 0.33 0.72 0.40 0.33 0.38 0.52 0.42 0.34 -0.13 

USO 0.34 0.32 0.76 0.38 0.29 0.37 0.50 0.40 0.31 -0.13 0.85 

RWR 0.72 0.64 0.68 0.77 0.63 0.71 0.73 0.70 0.65 -0.27 0.42 0.40 

DBV 0.45 0.41 0.51 0.48 0.40 0.48 0.51 0.46 0.43 -0.24 0.40 0.38 0.49 

FXE 0.25 0.24 0.46 0.26 0.25 0.28 0.38 0.29 0.23 0.06 0.45 0.45 0.30 0.29 

cnν  9.16 

Daytime 

cdR  XLY XLP XLE XLF XLV XLI XLB XLK XLU AGG GSG USO RWR DBV FXE 

XLY 

XLP 0.67 

XLE 0.53 0.44 

XLF 0.75 0.56 0.55 

XLV 0.63 0.67 0.46 0.57 

XLI 0.80 0.64 0.63 0.73 0.62 

XLB 0.67 0.52 0.75 0.65 0.53 0.74 

XLK 0.78 0.64 0.60 0.71 0.62 0.77 0.68 

XLU 0.52 0.56 0.53 0.45 0.54 0.54 0.52 0.53 

AGG -0.21 -0.16 -0.17 -0.21 -0.17 -0.20 -0.18 -0.20 -0.08 

GSG 0.19 0.14 0.55 0.22 0.12 0.25 0.38 0.23 0.22 -0.06 

USO 0.19 0.15 0.57 0.23 0.12 0.25 0.37 0.23 0.21 -0.06 0.86 

RWR 0.69 0.50 0.47 0.75 0.49 0.65 0.59 0.64 0.45 -0.19 0.20 0.19 

DBV 0.46 0.41 0.42 0.44 0.41 0.47 0.48 0.47 0.37 -0.17 0.27 0.28 0.40 

FXE 0.20 0.15 0.36 0.19 0.16 0.23 0.32 0.20 0.20 0.05 0.33 0.34 0.18 0.28 

cdν  21.90 

Log-likelihood 13346.47 

Table 4 This table reports the estimates (from the constant correlation model) for the two Student’s t copulas which 
govern the dependence structure of overnight and daytime returns. We find that overnight returns have a bit higher 
(for most cases) values of correlation matrix than daytime returns, while daytime returns have higher DoF parameter 
than overnight returns. We also report the log-likelihood of the copula components from the estimation. 
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 Estimate SE 

1π  0.007 0.001 

2π  0.012 0.001 

3π  2.76E-04 0.026 

4π  0.97 0.016 

1ψ  0.033 0.004 

2ψ  0.014 0.004 

3ψ  0.365 0.083 

4ψ  0.344 0.107 

cnν  11.85 0.69 

cdν  28.06 3.11 

   
Log-likelihood 13945.34  

Table 5 This table shows the ML estimates and their standard errors for the time-varying t copula. Consistent with 
the constant case, the DoF parameter of the copula for daytime returns is higher than that for overnight returns. We 
also report the log-likelihood of the copula component. Compared with the constant t copula case, we have 
significantly higher log-likelihood by making correlation matrices time-varying. 
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Figure 4  This figure plots the time-varying conditional correlation parameters of the t copulas for the four pairs of 
the returns. We observe that for three pairs the correlation parameter of daytime returns is higher than that of 
overnight returns. 

 
Figure 5  This figure plots the time-varying conditional tail dependence coefficient (TDC) for the four pairs of 
returns. We observe that for all the 4 pairs the TDC of overnight returns is significantly higher than that of daytime 
returns.  
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   VaR ES 

 1% 0.000122 0.000107 

Overnight 5% 0.000159 0.00014 

 10% 0.000172 0.000153 

 1% -0.00081 -0.00083 

Daytime 5% -0.00076 -0.00079 

 10% -0.00074 -0.00077 

Table 6 This table reports VaR and ES forecasts at 1%, 5% and 10% levels for both overnight and 
daytime periods. 

 
Overnight 

A=1 A=3 A=5 A=7 A=9 A=12 A=15 
XLY 0 0 0 0 0 0 0 
XLP 0 0 0 0 0 0 0 
XLE 0 0 0 0 0 0 0 
XLF 0 0 0 0 0 0 0 
XLV 0 0 0 0 0 0 0 
XLI 0 0 0 0 0 0 0 
XLB 1 1 1 1 1 1 1 
XLK 0 0 0 0 0 0 0 
XLU 0 0 0 0 0 0 0 
AGG 0 0 0 0 0 0 0 
GSG 0 0 0 0 0 0 0 
USO 0 0 0 0 0 0 0 
RWR 0 0 0 0 0 0 0 
DBV 0 0 0 0 0 0 0 
FXE 0 0 0 0 0 0 0 

Daytime 
A=1 A=3 A=5 A=7 A=9 A=12 A=15 

XLY 0 0 0 0 0 0 0 
XLP 0 0 0 0 0 0 0 
XLE 0 0 0 0 0 0 0 
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XLF 0 0 0 0 0 0 0 
XLV 0 0 0 0 0 0 0 
XLI 0 0 0 0 0 0 0 
XLB 0 0 0 0 0 0 0 
XLK 0 0 0 0 0 0 0 
XLU 0 0 0 0 0 0 0 
AGG 0 0 0 0 0 0 0 
GSG 0 0 0 0 0 0 0 
USO 0 0 0 0 0 0 0 
RWR 0 0 0 0 0 0 0 
DBV 1 1 1 1 1 1 1 
FXE 0 0 0 0 0 0 0 

Table 7 This table reports optimal portfolio weights for both overnight and daytime periods with 
different values of CRRA parameter.  


