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Abstract  This study utilizes the parametric approach (GARCH-based models) and the semi-parametric approach of Hull and White (1998) (HW-based models) to estimate the VaR for the eight stock indices in Europe and Asia stock markets. Empirical results show that, the kind of VaR approaches is more influential than that of return distribution settings on VaR estimate. Moreover, under the same return distributional setting, the HW-based models have the better VaR forecasting performance as compared with the GARCH-based models. Furthermore, irrespective of whether the GARCH-base model or HW-based model is employed, the SGT has the best VaR forecasting performance followed by student t while the normal owns the worst VaR forecasting performance. In addition, all models tend to underestimate the real market risk in most cases but the non-normal distributions (student t and SGT) and the semi-parametric approach try to reverse the trend of underestimating.
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1 Introduction
Over the last two decades, a number of global and national financial disasters have occurred due to failures in risk management procedures. For instance, United States Savings & Loan crisis of 1989-1991; 1990 Japanese asset price bubble collapsed; Black Wednesday of 1992-1993; 1994 economic crisis in Mexico; 1997 Asian Financial Crisis; 1998 Russian financial crisis; Financial crisis of 2007-2010, followed by the late 2000s recession and the 2010 European sovereign debt crisis. The crises caused many enterprises to be liquidated and many countries to face near depressions in their economies. These painful experiences once again underline the importance of accurately measuring financial risks and implementing sound risk management policies. Hence Value at Risk (VaR) is a widely used risk measure of the risk of loss on a specific portfolio of financial assets because it is an attempt to summarize the total risk with a single number. For example, if a portfolio of stocks has a one-day 99% VaR of US$1000 dollars, there is a 1% probability that the portfolio will fall in value by more than US$1000 dollars over a one day period. In other words, we are 99% certain that we will not lose more than US$1000 dollars in the next 1 day, where 1 days is the time horizon, 99 % is the confidence level, and theUS$1000 is the VaR of the portfolio.
VaR estimates are currently based on either of three main approaches: the historical simulation, the parametric method and the Monte Carlo simulation. The Monte Carlo simulation is a class of computational algorithms that rely on repeated random sampling to compute their results. That is, this approach allows for an infinite number of possible scenarios you are exposing yourself to huge model risks in determining the likelihood of any given path. In addition, as you had more and more variables that could possibly alter your return paths, model complexity and model risks also increase in scale. Like historical simulation however, this methodology removes any assumption of normality and thus if modeled accurately, probably would give the most accurate measure of the portfolio's true VaR. Besides, little research such as Vlaar (2000) had applied this approach to estimate the VaR. The parametric method is also known as variance-covariance approach. This method is the popular because the only variables you need to do the calculation are the mean and standard deviation of the portfolio, indicating that the simplicity of the calculations. The parametric method assumes that the returns of the portfolios are normally distributed and serially independent. In practice, this assumption of return normality has proven to be extremely risky. Indeed, this was the biggest mistake that LTCM made it gravely underestimating their portfolio risks. Another weakness with this method is the stability of both the standard deviation through time as well as the stability of the variance/covariance matrix in your portfolio. It is easy to depict how correlations have changed over time particularly in emerging markets and through contagion in times of financial crisis. Additionally, numerous studies focused on the parametric approach of GARCH family variance specifications (i.e. RiskMetrics, Power ARCH (APARCH), exponential GARCH(EGARCH), threshold GARCH (TGARCH), integrated GARCH(IGARCH), fractional IGARCH (FIGARCH) and so on) to estimate the VaR (see, Vlaar (2000); Giot and Laurent (2003a); Giot and Laurent (2003b); Gencay et al. (2003); Cabedo and Moya (2003); Angelidis et al. (2004); Huang and Lin (2004); Hartz et al. (2006); So and Yu (2006); Sadeghi and Shavvalpour (2006); Bali and Theodossiou (2007); Bhattacharyya et al. (2008); Lee et al. (2008); Lu et al. (2009))

The historical simulation assumes that the past will exactly replicate the future. The VaR calculation of this approach is literally ranking all of your past historical returns in terms of lowest to highest and computing with a predetermined confidence rate what your lowest return historically has been.
 In addition, several studies such as Vlaar (2000), Gencay et al. (2003), Cabedo and Moya (2003) and Lu et al. (2009) had applied this approach to estimate the VaR. Even though it is relatively easy to implement, there is a couple of shortcomings of this approach, and first of all is that it imposes a restriction on the estimation assuming asset returns are independent and identically-distributed (iid) which is not the case. From empirical evidence, it is known that asset returns are clearly not independent as they exhibit volatility clustering
. Therefore it can be unrealistic to assume iid asset returns. Second restriction relates to time. Historical simulation, it applies equal weight to all returns of the whole period and this is inconsistent with the nature where there is diminishing 
predictability of data that are further away from the present. 
These two shortcomings of historical simulation lead this paper to use the approach proposed by Hull and White (1998) (hereafter, HW method) as a representative of the semi-parametric approach. This semi-parametric approach combines the abovementioned parametric approach of GARCH-based variance specification with the weighted historical simulation. The weighted historical simulation applies decreasing weights to returns that are further away from the present, which overcomes the inconsistency of historical simulation with diminishing predictability of data that are further away from the present. Hence, this study utilizes the parametric approach (GARCH-N, GARCH-T and GARCH-SGT models) and the semi-parametric approach of Hull and White (1998)  (HW-N, HW-T and HW-SGT models), totaling six models, to estimate the VaR for the eight stock indices in Europe and Asia stock markets, then uses three accuracy measures: one likelihood ratio test (the unconditional coverage test (LRuc) of Kupiec (1995)) and two loss functions (the average quadratic loss function (AQLF) of Lopez (1999) and the unexpected loss (UL)) to compare the forecasting ability of the aforementioned models in terms of 
VaR. 

Our results show that, the kind of VaR approaches is more influential than that of return distribution settings on VaR estimate. Moreover, under the same return distributional setting, the HW-based models have the better VaR forecasting performance as compared with the GARCH-based models. Furthermore, irrespective of whether the GARCH-base model or HW-based model is employed, the SGT has the best VaR forecasting performance followed by student t while the normal owns the worst VaR forecasting performance. In addition, all models tend to underestimate the real market risk in most cases but the non-normal distributions (student t and SGT) and the semi-parametric approach try to reverse the trend of underestimating.
The remainder of this paper is organized as follows. Section 2 describes the methodology of two dissimilar VaR approaches (the parametric and semi-parametric approaches), and the VaR calculations using these approaches. Section 3 provides criteria for evaluating risk management, and Section 4 reports on and analyzes the empirical results of the out-of-sample VaR forecasting performance. The final section makes some concluding remarks.
2 Methodology
In this paper, there are two methods of calculating VAR: the parametric method using GARCH model with normal, student t and SGT distributions, and the semi-parametric approach such as the approach proposed by Hull and White (1998) (hereafter, HW method) which is a straightforward extension of traditional historical simulation.
2.1. Parametric method

Many time series data of financial assets appear to exhibit autocorrelated and volatility clustering. Bollerslev et al. (1992) showed that the GARCH(1,1) specification works well in most applied situations. Furthermore, the unconditional distribution of those returns displays leptokurtosis and a moderate amount of skewness. Hence this study thus considers the applicability of the GARCH(1,1) model with three conditional distributions, namely the normal, student t and SGT distributions, to estimate the corresponding volatility in terms of different stock indices and use the GARCH model as an 

 HYPERLINK "http://tw.dictionary.yahoo.com/dictionary?p=delegate&docid=1026556" \l "#" official delegate of the parametric method.
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 denotes the continuously compounded daily returns of the underlying assets on time t. The GARCH(1,1) model with SGT distribution (GARCH-SGT) can be expressed as follows:
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where 
[image: image8.wmf]t

e

 is the current error, 
[image: image9.wmf]m

 and 
[image: image10.wmf]2

t

s

 are the conditional mean and variance of return, respectively. Moreover, the variance parameters
[image: image11.wmf]b

a

w

and

,

 are the parameters to be estimated and obey the constraints 
[image: image12.wmf]0

,

,

>

b

a

w

 and 
[image: image13.wmf]1

<

b

+

a

. IID denotes that the standardized errors 
[image: image14.wmf]t

e

 are independent and identically distributed. Since 
[image: image15.wmf]t

e

 is drawn from the standardized SGT distribution which allows returns innovation to follow a flexible treatment of both skewness and excess kurtosis in the conditional distribution of returns. The probability density function for the standardized SGT distribution
 of Theodossiou (1998) can be represented as follows:
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where 
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where 
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 is the vector of parameters to be estimated, and 
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. Under the framework of the parametric techniques (Jorion, 2000), the one-day-ahead VaR based on GARCH-SGT model can be calculated as:
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where 
[image: image45.wmf])

n

,

,

;

(

F

t

c

l

k

e

 denotes the left-tailed quantile at 
[image: image46.wmf]%

c

 for standardized SGT distribution with shape parameters 
[image: image47.wmf]k

, 
[image: image48.wmf]l

 and 
[image: image49.wmf]n

 and can be evaluating by a numerical integral method (composite trapezoid rule)
. 
[image: image50.wmf]t

1

t

ˆ

+

s

 is one-step-ahead forecasts of the standard deviation of the returns conditional on all information upon the time t  and is defined in Eq. (2). Moreover, GARCH-SGT model gives for 
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2.2. Semi-parametric method

In this paper, we use the approach proposed by Hull and White (1998) (hereafter, HW method) as a representative of the semi-parametric approach. The HW method  is a straightforward extension of traditional historical simulation. Instead of using the actual historical percentage changes in market variables for the purposes of calculating VaR, we use historical changes that have been adjusted to reflect the ratio of the current daily volatility to the daily volatility at the time of the observation and assume that the variance of each market variable during the period covered by the historical data is monitored using a GARCH model. The methodology is explained in the following three steps:

(1) The GARCH(1,1) model with alternative distributions can be expressed as Eq. (1) and (2). Since 
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 is drawn from the standard alternative distribution. To standardize residual returns we need to divide the estimated residual, 
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(2) The modified residual return is obtained by the standardized residual return multiplied by the latest estimated volatility
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(3) The modified historical returns of assets is given as 
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. Then sort the returns ascendingly to achieve the empirical distribution. Thus VaR is the percentile that corresponds to the specified confidence level.
The HW-GARCH-SGT model (simply called HW-SGT) is that the standardized residual return of the GARCH-SGT model is applied by the HW approach to estimate the VaR so are HW-N and HW-T models. 

3 Evaluation methods of model-based VaR

Since many financial institutions have been required to hold capital against their market risk exposure, while the market risk capital requirements are based on the VaR estimates generated by the financial institutions’ own risk management models. Explicitly, the accuracy of these VaR estimates is of concern to both financial institutions and their regulators. Hence model accuracy is important to all VaR model users. To compare the forecasting ability of the aforementioned models in terms of VaR, this study considers three accuracy measures: the unconditional coverage test of Kupiec (1995) which are quite standard in the literatures. Moreover, the quadratic loss function and the unexpected loss are introduced and used for determining the 
accuracy of model-based VaR measurements
3.1. Failure rate and unconditional coverage test 
If the predicted VaR cannot cover the realized loss, this is termed as a “failure”. Thus we can define one indicator variables to describe the failure processes and each of them denotes one whenever a failure is occurred at time t. The indicator variables for long positions can be defined as
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where 
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 represent the indicator variables for long positions. If a VaR model truly provides the level of coverage defined by its confidence level, then the failure rate over the full sample will equal 
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The unconditional coverage test (LRuc) proposed by Kupiec (1995) is employed to test whether the unconditional coverage rate is statistically consistent with the VaR model’s prescribed confidence level. That is to test the null hypothesis: the probability of failure for each trial (
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) equals the specified model probability (p). The likelihood ratio test statistic is given by:
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where 
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 denotes a Bernoulli random variable representing the total number of VaR violations for T observations. The null hypothesis of the failure rate p is tested against the alternative hypothesis that the failure rate is different from p.
3.2 Quadratic loss function 

The quadratic loss function (QLF) of Lopez (1999) penalizes violations differently from the binary loss function, and pays attention to the magnitude of the violation. The QLF for long position can be expressed as:
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where 
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 represents the one-day-ahead QLF for long position. The quadratic term in Eq. (13) ensures that large violations are penalized more than the small violations which, provides a more powerful measure of model accuracy than the binary loss function.
3.3 Unexpected loss 

The unexpected loss (UL) will equal the average magnitude of the violation over the full sample. The magnitude of the violation for long position is given by:
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where 
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 is the one-day-ahead magnitude of the violation for long position. 

4. Empirical results
The study data comprises daily prices of the following eight stock indices: the Austria ATX(6/29/1999- 8/10/2009), the Belgium Brussels(10/19/1999-8/10/2009), the France CAC40(10/22/1999-8/10/2009) and the Switzerland Swiss(9/ 8/1999-8/10/2009) in Europe; the India Bombay(7/ 8/1999-8/10/2009), the Malaysia KLSE( 6/23/1999 -8/10/2009), the South Korea KOSPI(6/21/1999- 8/10/2009 ) and the Singapore STRAITS(8/24/1999- 8/10/2009 ) in Asia, where the numbers in parentheses are the start and end dates for our sample. Daily closing spot prices for the study period, totaling 2500 observations, were obtained from http://finance.yahoo.com. The stock returns are defined as the first difference in the
logarithms of daily stock prices then multiplied by 100.

4.1. Data preliminary analysis

Table 1 summarizes the basic statistical characteristics of return series for both the estimation and forecast periods. Notably, the average daily returns are all negative (resp. positive) for forecast (resp. estimation) period and very small compared with the variable standard deviation, indicating high volatility. Except the Brussels of estimation period and the CAC40, Swiss and Bombay of forecast period, all returns series almost exhibit negative skewness for both the estimation and forecast periods. The excess kurtosis all significantly exceeds zero at the 1% level, indicating a leptokurtic characteristic. Furthermore, J-B normality test statistics are all significant at the 1% level and thus reject the hypothesis of normality and confirm that neither returns series is normally distributed. Moreover, the Ljung-Box 
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 statistics for the squared returns are all significant at the 1% level and thus indicate that the return series exhibit linear dependence and strong ARCH effects. Therefore, the preliminary analysis of the data suggests the use of a GARCH model to capture the fat tails and time-varying volatility found in these stock indices returns series.
4.2. Estimation results for alternate VaR models

This section estimates the GARCH(1,1) model with alternative distributions (normal, student t and SGT) for performing VaR analysis. For each data series, three GARCH models are estimated with a sample of 2000 daily returns, and the estimation period is then rolled forwards by adding one new day and dropping the most distant day. In this procedure, according to the theory of section 2, the out-of-sample VaR are computed for the next 500 days. 

Table 2 lists the estimation results
 of the GARCH-N, GARCH-T and GARCH-SGT models for the ATX, Brussels, CAC40 and Swiss stock indices in Europe, and the Bombay, KLSE, STRAITS and KOSPI stock indices in Asia during the first in-sample period. The variance coefficients 
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 are all positive and significant almost at the 1% level. Furthermore, the sums of parameters 
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 and 
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 for these three models are less than one thus ensuring that the conditions for stationary covariance hold. As to the fat-tails parameters in student t distribution, the fat-tails parameter (n) ranges from 4.9906(KLSE) to 14.9758(CAC40) for GARCH-T model. All these shape parameters are all significant at 1% level and obey the constraint 
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, and thereby implying that the distribution of returns has larger, thicker tails than the normal distribution. Turning to the shape parameters in SGT distribution, the fat-tails parameter (n) ranges from 4.9846(KLSE) to 21.4744(KOSPI) and the fat-tails parameter (
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) is between 1.5399(KOSPI) and 2.3917(Bombay). The skewness parameter (
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) ranges from -0.1560(Bombay) to -0.0044(KLSE). Moreover, these three coefficients are almost significant at the 1% level and thereby these negative skewness parameters implying that the distribution of returns has a left-ward tail. Therefore, both of fat-tails and skewness can not be ignored in modeling these stock indices returns. The Ljung-Box 
[image: image85.wmf])

20

(

Q

2

 statistics for the squared returns are all not significant at the 10% level and thus indicate that serial correlation does not exist in standard residuals, confirming that the GARCH(1,1) specification in these models is sufficient to correct the serial correlation of these eight returns series in the conditional variance equation. 
Moreover, as shown in Table 2, the 
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 statistics for both GARCH-T and GARCH-SGT models are all significant at the 1% level, indicating that reject the null hypothesis of normality for either stock index. These results thus imply that both the student t and SGT distributions closely approximate the empirical return series as compared with the normal distribution. Furthermore, except for ATX and KLSE stock indices, the 
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 statistics of GARCH-SGT model are all significant, implying that the SGT distribution more closely approximates the empirical return series than the student t does. To sum up, the SGT distribution closely approximates the empirical return series followed by student t and normal distributions. 
4.3 The results of VaR performance assessment

In this paper, we utilizes the parametric approach (GARCH-N, GARCH-T and GARCH-SGT models) and the semi-parametric approach (HW-N, HW-T and HW-SGT models), totaling six models, to estimate the VaR. ; thereafter it was compared with the observed return and both results were recorded. This section then uses three accuracy measures: one likelihood ratio test (the unconditional coverage test (LRuc) of Kupiec (1995)) and two loss functions (the average quadratic loss function (AQLF) of Lopez (1999) and the unexpected loss (UL)) to compare the forecasting ability of the aforementioned models in terms of VaR.
Table 3, Table 4 and Table 5 provide the failure rates and the results of the prior three accuracy evaluation tests (LRuc, AQLF and UL) for the aforementioned six models  at the 95%, 99% and 99.5% confidence levels, respectively. As observed in Table 3-5, we find that, except for a few cases at the 99% and 99.5% confidence levels, all models tend to underestimate real market risk because the empirical failure rate is higher than the theoretical failure rate in most cases. The above-mentioned exceptional cases emerge at the GARCH-SGT model of 99% level (CAC40); both the GARCH-T and GARCH-SGT models of 99.5% level (KLSE and STRAITS); the GARCH-N (KLSE), GARCH-T (KLSE) and GARCH-SGT (KLSE and STRAITS) models of 99% level; the HW-N (STRAITS), HW-T (ATX and STRAITS) and HW-SGT (ATX, KLSE and STRAITS) models of 99.5% level, where the stock indices in parentheses behind the models are the exceptional cases. Moreover, the empirical failure rate of the above exceptional cases is lower than the theoretical failure rate, indicating that the non-normal distributions (student t and SGT) and the semi-parametric approach try to reverse the trend of underestimating real market risk, especially at the 99.5% level.
As to the back-testing, the back-testing is a specific type of historical testing that determines the performance of the strategy if it had actually been employed during past periods and market conditions. In this paper, the unconditional coverage tests (LRuc) proposed by Kupiec (1995) is employed to test whether the unconditional coverage rate is statistically consistent with the VaR model’s prescribed confidence level and thus is applied as the back-testing to measure the accuracy performance of these six VaR models. To interpret the result of accepting back-testing in Table 3-5, there is an illustration in the following. In Table 3, the VaR estimates based on GARCH-N, GARCH-T and GARCH-SGT models respectively have totally 2(KLSE and STRAITS), 2(KLSE and STRAITS) and 5(Brussels, Bombay, KLSE, STRAITS and KOSPI) acceptances for LRuc test when applying to all stock indices returns under 90% confidence level, where the stock indices in parentheses behind the number are the acceptance cases. For 99% confidence level, Table 4 shows that the GARCH-N, GARCH-T and GARCH-SGT models pass the 
[image: image88.wmf]uc

LR

 tests with a total of 1, 5 and 8 stock indices, respectively; for 99.5% confidence level, Table 5 gives that the GARCH-N, GARCH-T and GARCH-SGT models pass the 
[image: image89.wmf]uc

LR

 tests with a total of 3, 7 and 7 stock indices, respectively. Hence, under all confidence levels, there are totally 6, 14 and 20 acceptances for GARCH-N, GARCH-T and GARCH-SGT models (the parametric approach), respectively. On the contrary, for 95% confidence level, Table 3 describes that the HW-N, HW-T and HW-SGT models pass the 
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 tests with a total of 5, 5 and 6 stock indices, respectively. Moreover, for 99% confidence level, Table 4 depicts that the HW-N, HW-T and HW-SGT models pass the 
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 tests with a total of 7, 8 and 8 stock indices, respectively; for 99.5% confidence level, Table 5 illustrates that the HW-N, HW-T and HW-SGT models pass the 
[image: image92.wmf]uc

LR

 tests with a total of 7, 7 and 8 stock indices, respectively. Hence, under all confidence levels, there are totally 19, 20 and 22 acceptances for HW-N, HW-T and HW-SGT models (the semi-parametric approach), respectively.

From the above-mentioned results, we can find the following two important phenomena: First, under the same return distributional setting, the number of acceptance of the HW-based models is greater or equal than those of the GARCH-based models,  irrespective of whether the case of individual level (95%, 99% or 99.5%) or all levels (95%, 99% and 99.5%) is considered. For example, with regard to all levels, the number of acceptance of the HW-N model (19) is greater than those of the GARCH-N models (6). These results reveal that the HW-based models (semi-parametric approach) have the better VaR forecasting performance as compared with GARCH-based models (parametric approach). Second, the number of acceptance of the SGT distribution is the greatest followed by the student t and normal distributions, irrespective of whether the GARCH-base model (parametric) or HW-based model (semi-parametric approach) is employed. For instance, with regard to all levels, the number of acceptance of the GARCH-SGT model (20) is the greatest followed by the GARCH-T model (14) and GARCH-N model (6). These results indicate that the SGT has the best VaR forecasting performance followed by student t while the normal owns the worst VaR forecasting performance.

Turning to the other two accuracy measures (i.e. AQLF and UL), the two loss functions (the average quadratic loss function (AQLF) and the unexpected loss (UL)) reflect the magnitude of the violation which occur as the observed return exceeds the VaR estimation. The smaller the AQLF and UL are generated, the better the forecasting performance of the models is. As observed in Table 3-5, we can also find the following two important phenomena which are similar as those of the back-testing as was mentioned above: First, under the same return distributional setting, the AQLF and UL generated by the HW-based models is smaller than those generated by the GARCH-based models,  irrespective of whether the 95%, 99% or 99.5% level is considered. These results reveal that the HW-based models (semi-parametric approach) significantly have the better VaR forecasting performance as compared with GARCH-based models (parametric approach), which is in line with the results of the back-testing. Second, for all confidence levels, the GARCH-SGT model yields the lowest AQLF and UL for most of stock indices. Moreover, for most of stock indices, the GARCH-N model produces the highest AQLF and UL for both 99% and 99.5% levels while the GARCH-T model gives the highest AQLF and UL for 95% level. These results indicate that the GARCH-SGT model significantly owns the best out-of-sample VaR performance while the GARCH-N model appears to have the worst out-of-sample VaR performance. On the contrary, for all confidence levels, the HW-N model bears the highest AQLF and UL for most of stock indices while the HW-SGT model gives the lowest AQLF and UL for half of stock indices, indicating that the HW-N model significantly owns the worst out-of-sample VaR performance while the HW-SGT model appear to bear the highest out-of-sample VaR performance. Consequently, it seems reasonable to conclude that, the SGT has the best VaR forecasting performance followed by student t while the normal owns the worst VaR forecasting performance, which appears to be consistent with the results of back-testing.

To sum up, according to the three accuracy measures, the HW-based models (semi-parametric approach) have the better VaR forecasting performance as compared with GARCH-based models (parametric approach) and the SGT has the best VaR forecasting performance followed by student t while the normal owns the worst VaR forecasting performance. In additionally, the kind of VaR approach is more influential than that of return distribution setting on VaR estimate.

5. Conclusion

This study utilizes the parametric approach (GARCH-N, GARCH-T and GARCH-SGT models) and the semi-parametric approach of Hull and White (1998)  (HW-N, HW-T and HW-SGT models), totaling six models, to estimate the VaR for the eight stock indices in Europe and Asia stock markets, then uses three accuracy measures: one likelihood ratio test (the unconditional coverage test (LRuc) of Kupiec (1995)) and two loss functions (the average quadratic loss function (AQLF) of Lopez (1999) and the unexpected loss (UL)) to compare the forecasting ability of the aforementioned models in terms of VaR.
The empirical findings can be summarized as follows. First, according the results of the log-likelihood ratio test, the SGT distribution closely approximates the empirical return series followed by student t and normal distributions. Second, in terms of the failure rate, all models tend to underestimate the real market risk in most cases but the non-normal distributions (student t and SGT) and the semi-parametric approach try to reverse the trend of underestimating real market risk, especially at the 99.5% level. Third, the kind of VaR approaches is more influential than that of return distribution settings on VaR estimate. Moreover, under the same return distributional setting, the HW-based models (semi-parametric approach) have the better VaR forecasting performance as compared with the GARCH-based models (parametric approach).  Finally, irrespective of whether the GARCH-base model (parametric) or HW-based model (semi-parametric approach) is employed, the SGT has the best VaR forecasting performance followed by student t while the normal owns the worst VaR forecasting performance. 
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	Table 1 Descriptive statistics of daily return

	
	Mean
	Std. Dev.
	Max.
	Min.
	Skewness
	Kurtosis
	J-B
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	Panel A. Estimation period(2000 observations)

	ATX
	0.0675
	0.9680
	4.6719
	-7.7676
	-0.6673c
	4.4547c
	1802.17c
	547.23c

	Brussels
	0.0179
	1.1577
	9.3339
	-5.6102
	0.2607c
	6.0567c
	3079.66c
	1479.84c

	CAC40
	0.0090
	1.4012
	7.0022
	-7.6780
	-0.0987a
	2.9924c
	749.48c
	2270.73c

	Swiss
	0.0086
	1.1602
	6.4872
	-5.7803
	-0.0530
	4.5084c
	1694.78c
	1985.51c

	Bombay
	0.0648
	1.5379
	7.9310
	-11.8091
	-0.5632c
	4.2350c
	1600.43c
	707.26c

	KLSE
	0.0243
	0.9842
	5.8504
	-6.3422
	-0.3765c
	6.2537c
	3306.35c
	554.16c

	KOSPI
	0.0397
	1.8705
	7.6971
	-12.8046
	-0.4671c
	3.6010c
	1153.39c
	365.29c

	STRAITS
	0.0239
	1.1282
	4.9052
	-9.0949
	-0.5864c
	4.8254c
	2055.03c
	239.53c

	

	Panel B. Forecast period(500 observations)

	ATX
	-0.1352
	2.6532
	12.0210
	-10.2526
	-0.0360
	2.4225c
	122.37c
	735.66c 

	Brussels
	-0.1195
	1.9792
	9.2212
	-8.3192
	-0.0888
	3.1545c
	207.97c
	581.42c 

	CAC40
	-0.0907
	2.1564
	10.5945
	-9.4715
	0.2209b
	4.4068c
	408.65c
	353.15c 

	Swiss
	-0.0704
	1.8221
	10.7876
	-8.1077
	0.2427b
	4.4101c
	410.10c
	502.59c

	Bombay
	-0.0101
	2.6043
	15.9899
	-11.6044
	0.2529b
	3.4248c
	249.70c
	57.24c

	KLSE
	-0.0166
	1.2040
	4.2586
	-9.9785
	-1.1163c
	9.8218c
	2113.64c
	17.87c

	KOSPI
	-0.0327
	2.1622
	11.2843
	-11.1720
	-0.4177c
	4.3977c
	417.47c
	343.50c 

	STRAITS
	-0.0594
	2.0317
	7.5305
	-9.2155
	-0.1183
	2.3827c
	119.45c
	219.52c


Notes: 1. a, b and c denote significantly at the 10%, 5% and 1% levels, respectively. 2. J-B statistics are based on Jarque and Bera (1987) and are asymptotically chi-squared-distributed with 2 degrees of freedom. 3. 
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asymptotically chi-squared-distributed with 20 degrees of freedom.
	Table 2 Estimation results for alternative models (estimation period)

	
	ATX
	Brussels
	CAC40
	Swiss

	Panel A. GARCH(1,1) with normal distribution
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	0.1007c(0.0202)
	0.0760c(0.0177)
	0.0537b(0.0227)
	0.0488c(0.0187)
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	0.0612c(0.0124)
	0.0239c(0.0032)
	0.0143c(0.0029)
	0.0243c(0.0057)
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	0.1146c(0.0158)
	0.1470c(0.0090)
	0.0799c(0.0100)
	0.1184c(0.0136)
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	0.8209c(0.0227)
	0.8354c(0.0034)
	0.9132c(0.0105)
	0.8632c(0.0150)
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	16.147
	14.731
	22.333
	19.883

	LL
	-2648.73
	-2649.75
	-3156.40
	-2748.86

	

	Panel B. GARCH(1,1) with student t distribution
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	0.0998c(0.0178)
	0.0775c(0.0162)
	0.0622c(0.0216)
	0.0589c(0.0167)
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	0.0623c(0.0160)
	0.0179c(0.0049)
	0.0118c(0.0043)
	0.0177c(0.0052)
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	0.0986c(0.0188)
	0.1319c(0.0177)
	0.0785c(0.0110)
	0.1078c(0.0151)
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	0.8324c(0.0292)
	0.8560c(0.0180)
	0.9166c(0.0109)
	0.8799c(0.0153)

	n
	7.3393c(1.0609)
	9.4946c(1.7035)
	14.9758c(4.0264)
	9.6205c(1.6621)
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	17.334
	19.676
	21.719
	18.712

	LL
	-2610.15
	-2626.31
	-3146.96
	-2724.27

	LRN
	77.16c
	46.88c
	18.88c
	49.18c

	

	Panel C. GARCH(1,1) with SGT distribution
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	0.0875c(0.0177)
	0.0691c(0.0158)
	0.0525b(0.0217)
	0.0479c(0.0175) 
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	0.0626c(0.0173)
	0.0175c(0.0044)
	0.0115c(0.0043)
	0.0172c(0.0048)
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	0.0952c(0.0189)
	0.1277c(0.0163)
	0.0774c(0.0103)
	0.1086c(0.0148)
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	0.8343c(0.0323)
	0.8590c(0.0161)
	0.9170c(0.0106)
	0.8787c(0.0150)

	n
	7.8001c(2.4847)
	6.9261c(1.7169)
	13.3004b(6.3162)
	7.8987c(2.1709)
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	-0.0660b(0.0290)
	-0.1019c(0.0346)
	-0.1175c(0.0335)
	-0.1175c(0.0323)
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	1.9710c(0.2290)
	2.3745c(0.2782)
	2.1219c(0.2220)
	2.2601c(0.2519)
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	17.779
	20.509
	21.803
	18.791

	LL
	-2608.01
	-2621.51
	-3140.58
	-2717.94

	LRN (LRT)
	81.44c(4.28)
	56.48c(9.6c)
	31.64c(12.76c)
	61.84c(12.66c)

	


Table 2 (continued)
	
	Bombay
	KLSE
	KOSPI
	STRAITS

	Panel A. GARCH(1,1) with normal distribution
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	0.1427c(0.0262)
	0.0453c(0.0164)
	0.1212c(0.0318)
	0.0623c(0.0196)
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	0.0906c(0.0201)
	0.0077c(0.0029)
	0.0214c(0.0082)
	0.0143c(0.0042)
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	0.1438c(0.0167)
	0.0998c(0.0174)
	0.0799c(0.0146)
	0.1031c(0.0134)
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	0.8189c(0.0206)
	0.8989c(0.0165)
	0.9177c(0.0141)
	0.8938c(0.0123)
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	19.954
	27.905
	11.214
	15.574

	LL
	-3453.18
	-2490.05
	-3843.01
	-2895.36

	

	Panel B. GARCH(1,1) with student t distribution
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	0.1583c(0.0250)
	0.0351b(0.0142)
	0.1377c(0.0302)
	0.0652c(0.0192)
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	0.0863c(0.0222)
	0.0116b(0.0050)
	0.0163b(0.0078)
	0.0135c(0.0049)
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	0.1417c(0.0198)
	0.1116c(0.0254)
	0.0639c(0.0128)
	0.0806c(0.0136)
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	0.8225c(0.0234)
	0.8848c(0.0248)
	0.9332c(0.0127)
	0.9119c(0.0139)

	n
	8.3410c(1.3143)
	4.9906c(0.5782)
	7.2792c(1.1365)
	6.7643c(0.9319)
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	19.980
	24.477
	11.304
	16.554

	LL
	-3420.18
	-2412.82
	-3801.67
	-2838.34

	LRN 
	66.0c
	154.46c
	82.68c
	114.04c

	

	Panel C. GARCH(1,1) with SGT distribution
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	0.1266c(0.0261)
	0.0341b(0.0147)
	0.1021c( 0.0285)
	0.0516c(0.0185)
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	0.0836c(0.0201)
	0.0116b(0.0049)
	0.0167b( 0.0077)
	0.0132c(0.0045)
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	0.1350c(0.0196)
	0.1117c(0.0242)
	0.0613c( 0.0133)
	0.0785c(0.0135)
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	0.8282c(0.0228)
	0.8847c(0.0240)
	0.9345c( 0.0135)
	0.9138c(0.0136)

	n
	6.2282c(1.3602)
	4.9846c(1.0922)
	21.4744(15.8310)
	6.2641c(1.4297)
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	-0.1560c(0.0303)
	-0.0044(0.0281)
	-0.1006c(0.0266)
	-0.0745b(0.0296)
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	2.3917c(0.2801)
	2.0016c(0.2450)
	1.5399c( 0.1513)
	2.1194c(0.2256)
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	21.167
	24.455
	11.067
	16.595

	LL
	-3408.46
	-2412.81
	-3791.66
	-2835.52

	LRN (LRT)
	89.44c(23.44c)
	154.48c(0.02)
	102.7c(20.02c)
	119.68c(5.64a)


Note: 1. a, b and c denote significantly at the 10%, 5% and 1% levels, respectively. 2. Numbers in parentheses are standard errors. 3. LL indicates the log-likelihood value. 4. The critical value of the LRN test statistics at the 1%  significance level is 6.635 for GARCH-T and 11.345 for GARCH-SGT model. 5. The critical value of the LRT test statistics at the 10%, 5% and 1% significance level is 4.605, 5.991 and 9.210 for GARCH-SGT model, respectively. 6. 
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asymptotically chi-squared-distributed with 20 degrees of freedom.
	Table 3 Out-of-sample long VaR performance at the 95% confidence level

	
	GARCH
	
	HW-GARCH

	
	Failure rate (LRuc )
	AQLF
	UL
	
	Failure rate (LRuc )
	AQLF
	UL

	Panel A. ATX

	N
	0.0960(17.75)
	0.30360
	-0.10151
	
	0.0960(17.75)
	0.30642
	-0.10308

	T
	0.0960(17.75)
	0.32058
	-0.10865
	
	0.0920(15.04)
	0.30342
	-0.10384

	SGT
	0.0900(13.75)
	0.29877
	-0.10212
	
	0.0980(19.18)
	0.32263
	-0.10858

	

	Panel B. Brussels

	N
	0.0780(7.10)
	0.20246
	-0.07099
	
	0.0680(3.08*)
	0.18374
	-0.06673

	T
	0.0720(4.51)
	0.19494
	-0.07020
	
	0.0620(1.41*)
	0.16978
	-0.06268

	SGT
	0.0660(2.45*)
	0.18178
	-0.06602
	
	0.0620(1.41*)
	0.17067
	-0.06262

	

	Panel C. CAC40

	N
	0.0740(5.31)
	0.21446
	-0.06485
	
	0.0700(3.76*)
	0.20928
	-0.05844

	T
	0.0800(8.07)
	0.22598
	-0.06887
	
	0.0720(4.51)
	0.19510
	-0.05617

	SGT
	0.0760(6.18)
	0.21146
	-0.06281
	
	0.0700(3.76*)
	0.19390
	-0.05600

	

	Panel D. Swiss

	N
	0.0760(6.18)
	0.18567
	-0.06181
	
	0.0620(1.41*)
	0.15104
	-0.05088

	T
	0.0740(5.31)
	0.18729
	-0.06345
	
	0.0600(0.99*)
	0.14222
	-0.04694

	SGT
	0.0740(5.31)
	0.17506
	-0.05698
	
	0.0560(0.36*)
	0.13928
	-0.04697

	

	Panel E. Bombay

	N
	0.0780(7.10)
	0.34428
	-0.10214
	
	0.0800(8.07)
	0.33643
	-0.09967

	T
	0.0820(9.11)
	0.35999
	-0.10617
	
	0.0780(7.10)
	0.33182
	-0.09639

	SGT
	0.0700(3.76*)
	0.31488
	-0.09366
	
	0.0800(8.07)
	0.33629
	-0.09824

	

	Panel F. KLSE

	N
	0.0560(0.36*)
	0.20084
	-0.04595
	
	0.0740(5.31)
	0.23255
	-0.05623

	T
	0.0600(0.99*)
	0.21827
	-0.05152
	
	0.0700(3.76*)
	0.23146
	-0.05276

	SGT
	0.0580(0.64*)
	0.21375
	-0.05007
	
	0.0640(1.90*)
	0.22378
	-0.05306

	

	Panel G. STRAITS

	N
	0.0580(0.64*)
	0.21980
	-0.06233
	
	0.0640(1.90*)
	0.24194
	-0.06675

	T
	0.0640(1.90*)
	0.25978
	-0.07222
	
	0.0620(1.41*)
	0.23921
	-0.06511

	SGT
	0.0620(1.41*)
	0.24670
	-0.06736
	
	0.0560(0.36*)
	0.23035
	-0.06428

	

	Panel H. KOSPI

	N
	0.0740(5.31)
	0.27949
	-0.08826
	
	0.0600(0.99*)
	0.24267
	-0.07816

	T
	0.0760(6.18)
	0.32360
	-0.09624
	
	0.0620(1.41*)
	0.25234
	-0.07522

	SGT
	0.0672(2.82*)
	0.27616
	-0.08236
	
	0.0620(1.41*)
	0.24475
	-0.07531


Note: 1. * indicates that the model passes the unconditional coverage test at the 5% significance level and the critical values of the LRuc test statistics at the 5% significance level is 3.84. 2. The red (resp. blue) font represents the lowest (resp. highest) AQLF and unexpected loss when the predictive accuracies of three different innovations with the same VaR method are compared. 3. The delete line font represents the lowest AQLF and unexpected loss when the predictive accuracies of two different VaR methods with the same innovation are compared. 4. The model acronyms stand for the following methods: HW-GARCH = non-parametric method proposed by Hull and White (1998); GARCH = parametric method of GARCH model; N = the standard normal distribution; T = the standardized student t distribution; SGT = the 
standardized SGT distribution proposed by Theodossiou(1998).

	Table 4 Out-of-sample long VaR performance at the 99% confidence level

	
	GARCH
	
	HW-GARCH

	
	Failure rate (LRuc )
	AQLF
	UL
	
	Failure rate (LRuc )
	AQLF
	UL

	Panel A. ATX

	N
	0.0300(13.16)
	0.20577
	-0.02704
	
	0.0160(1.53*)
	0.06164
	-0.01770

	T
	0.0200(3.91)
	0.19791
	-0.01986
	
	0.0160(1.53*)
	0.04977
	-0.01551

	SGT
	0.0160(1.53*)
	0.17702
	-0.01725
	
	0.0160(1.53*)
	0.05279
	-0.01626

	

	Panel B. Brussels

	N
	0.0260(8.97)
	0.13491
	-0.02538
	
	0.0180(2.61*)
	0.03685
	-0.01726

	T
	0.0180(2.61*)
	0.11962
	-0.01947
	
	0.0160(1.53*)
	0.03465
	-0.01559

	SGT
	0.0160(1.53*)
	0.11033
	-0.01711
	
	0.0160(1.53*)
	0.03536
	-0.01596

	

	Panel C. CAC40

	N
	0.0200(3.91)
	0.14794
	-0.01913
	
	0.0160(1.53*)
	0.07472
	-0.01808

	T
	0.0100(0.00*)
	0.14325
	-0.01494
	
	0.0100(0.00*)
	0.05628
	-0.01436

	SGT
	0.0060(0.94*)
	0.13144
	-0.01354
	
	0.0140(0.71*)
	0.05992
	-0.01466

	

	Panel D. Swiss

	N
	0.0260(8.97)
	0.12387
	-0.01967
	
	0.0180(2.61*)
	0.03938
	-0.01353

	T
	0.0160(1.53*)
	0.11943
	-0.01516
	
	0.0140(0.71*)
	0.03528
	-0.01341

	SGT
	0.0140(0.71*)
	0.10151
	-0.01244
	
	0.0140(0.71*)
	0.03512
	-0.01338

	

	Panel E. Bombay

	N
	0.0300(13.16)
	0.23811
	-0.03748
	
	0.0120(0.18*)
	0.04961
	-0.01751

	T
	0.0220(5.41)
	0.22706
	-0.02822
	
	0.0120(0.18*)
	0.04539
	-0.01586

	SGT
	0.0180(2.61*)
	0.19232
	-0.02152
	
	0.0120(0.18*)
	0.04504
	-0.01617

	

	Panel F. KLSE

	N
	0.0160(1.53*)
	0.16522
	-0.01892
	
	0.0080(0.21*)
	0.07681
	-0.01341

	T
	0.0100(0.00*)
	0.16891
	-0.01585
	
	0.0060(0.94*)
	0.08114
	-0.01425

	SGT
	0.0100(0.00*)
	0.16278
	-0.01551
	
	0.0060(0.94*)
	0.07965
	-0.01384

	

	Panel G. STRAITS

	N
	0.0240(7.11)
	0.16096
	-0.01848
	
	0.0120(0.18*)
	0.09107
	-0.01763

	T
	0.0100(0.00*)
	0.17606
	-0.01568
	
	0.0100(0.00*)
	0.07477
	-0.01403

	SGT
	0.0100(0.00*)
	0.16258
	-0.01406
	
	0.0080(0.21*)
	0.07278
	-0.01361

	

	Panel H. KOSPI

	N
	0.0220(5.41)
	0.18050
	-0.02675
	
	0.0200(3.91)
	0.03799
	-0.01639

	T
	0.0200(3.91)
	0.20379
	-0.02199
	
	0.0180(2.61*)
	0.04722
	-0.01942

	SGT
	0.0163(1.68*)
	0.15465
	-0.01563
	
	0.0180(2.61*)
	0.04487
	-0.01941


Note: 1. * indicates that the model passes the unconditional coverage test at the 5% significance level and the critical values of the LRuc test statistics at the 5% significance level is 3.84. 2. The red (resp. blue) font represents the lowest (resp. highest) AQLF and unexpected loss when the predictive accuracies of three different innovations with the same VaR method are compared. 3. The delete line font represents the lowest AQLF and unexpected loss when the predictive accuracies of two different VaR methods with the same innovation are compared. 4. The model acronyms stand for the following methods: HW-GARCH = non-parametric method proposed by Hull and White (1998); GARCH = parametric method of GARCH model; N = the standard normal distribution; T = the standardized student t distribution; SGT = the 
standardized SGT distribution proposed by Theodossiou(1998).

	Table 5 Out-of-sample long VaR performance at the 99.5% confidence level

	
	GARCH
	
	HW-GARCH

	
	Failure rate (LRuc )
	AQLF
	UL
	
	Failure rate (LRuc )
	AQLF
	UL

	Panel A. ATX

	N
	0.0180(10.14)
	0.06227
	-0.01837
	
	0.0060(0.09*)
	0.02688
	-0.00917

	T
	0.0120(3.53*)
	0.03704
	-0.01100
	
	0.0040(0.10*)
	0.01756
	-0.00670

	SGT
	0.0100(1.94*)
	0.03010
	-0.00889
	
	0.0040(0.10*)
	0.02054
	-0.00750

	

	Panel B. Brussels

	N
	0.0180(10.14)
	0.04122
	-0.01875
	
	0.0160(7.67)
	0.01977
	-0.00680

	T
	0.0160(7.67)
	0.02842
	-0.01231
	
	0.0120(3.53*)
	0.01683
	-0.00689

	SGT
	0.0140(5.45)
	0.02268
	-0.00982
	
	0.0120(3.53*)
	0.01664
	-0.00644

	

	Panel C. CAC40

	N
	0.0100(1.94*)
	0.04863
	-0.01287
	
	0.0080(0.76*)
	0.04943
	-0.01324

	T
	0.0060(0.09*)
	0.04022
	-0.01125
	
	0.0060(0.09*)
	0.03704
	-0.01050

	SGT
	0.0060(0.09*)
	0.03553
	-0.00993
	
	0.0060(0.09*)
	0.03576
	-0.01019

	

	Panel D. Swiss

	N
	0.0160(7.67)
	0.03634
	-0.01312
	
	0.0080(0.76*)
	0.01690
	-0.00743

	T
	0.0080(0.76*)
	0.02068
	-0.00924
	
	0.0060(0.09*)
	0.01364
	-0.00676

	SGT
	0.0080(0.76*)
	0.01679
	-0.00734
	
	0.0060(0.09*)
	0.01403
	-0.00692

	

	Panel E. Bombay

	N
	0.0180(10.14)
	0.07676
	-0.02599
	
	0.0080(0.76*)
	0.02303
	-0.00838

	T
	0.0120(3.53*)
	0.04716
	-0.01642
	
	0.0080(0.76)
	0.02553
	-0.00887

	SGT
	0.0120(3.53*)
	0.03654
	-0.01148
	
	0.0080(0.76*)
	0.02493
	-0.00838

	

	Panel F. KLSE

	N
	0.0080(0.76*)
	0.08851
	-0.01538
	
	0.0080(0.21*)
	0.07681
	-0.01341

	T
	0.0040(0.10*)
	0.06645
	-0.01197
	
	0.0060(0.09*)
	0.06875
	-0.01235

	SGT
	0.0040(0.10*)
	0.06451
	-0.01178
	
	0.0040(0.10*)
	0.06790
	-0.01224

	

	Panel G. STRAITS

	N
	0.0080(0.76*)
	0.07172
	-0.01342
	
	0.0040(0.10*)
	0.07149
	-0.01527

	T
	0.0040(0.10*)
	0.05783
	-0.01090
	
	0.0040(0.10*)
	0.05792
	-0.01117

	SGT
	0.0040(0.10*)
	0.05391
	-0.01004
	
	0.0040(0.10*)
	0.05588
	-0.01105

	

	Panel H. KOSPI

	N
	0.0200(12.83)
	0.03610
	-0.01474
	
	0.0100(1.94*)
	0.01285
	-0.00510

	T
	0.0120(3.53*)
	0.02023
	-0.00796
	
	0.0120(3.53*)
	0.01948
	-0.00730

	SGT
	0.0102(2.07*)
	0.01442
	-0.00464
	
	0.0120(3.53*)
	0.01566
	-0.00572


Note: 1. * indicates that the model passes the unconditional coverage test at the 5% significance level and the critical values of the LRuc test statistics at the 5% significance level is 3.84. 2. The red (resp. blue) font represents the lowest (resp. highest) AQLF and unexpected loss when the predictive accuracies of three different innovations with the same VaR method are compared. 3. The delete line font represents the lowest AQLF and unexpected loss when the predictive accuracies of two different VaR methods with the same innovation are compared. 4. The model acronyms stand for the following methods: HW-GARCH = non-parametric method proposed by Hull and White (1998); GARCH = parametric method of GARCH model; N = the standard normal distribution; T = the standardized student t distribution; SGT = the 
standardized SGT distribution proposed by Theodossiou(1998).
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� This means if you had 200 past returns you and you wanted to know with 99% confidence what's the worst you can do, you would go to the 2nd data point on your ranked series and know that 99% of the time you will do no worse than this amount.


� large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes


� The standardized SGT distribution, which has zero mean and unit variance, was checked by Mathematica software and another analogous standardized SGT distribution was proposed by Bali and Theodossiou(2007).


� See Faires, J.D. and Burden, R. ( 2003) for more details.


� The parameters are estimated by QMLE (Quasi maximum likelihood estimation; QMLE) and the BFGS optimization algorithm, using the econometric package of WinRATS 6.1.


� LRN for GARCH-T model follows the � EMBED Equation.3  ��� distribution with one degree of freedom. On the other hand, LRN for GARCH-SGT model follows the � EMBED Equation.3  ��� distribution with three degree of freedom.


� LRT for GARCH-SGT model follows the � EMBED Equation.3  ��� distribution with two degree of freedom. LRN and LRT are the log-likelihood ratio test statistics and are specified as follows: LR = −2(LRr - LRu) ~ � EMBED Equation.3  ���, where LRr and LRu are , respectively, the maximum value of the log-likelihood values under the null hypothesis of the restricted model and the alternative hypothesis of the unrestricted model, and m is the number of the restricted parameters in the restricted model. For example, LRN for GARCH-SGT model could be used to test the null hypothesis that log-returns are normally distributed against the alternative hypothesis that they are SGT distributed. The null hypothesis for testing normality is � EMBED Equation.3  ��� and the alternative hypothesis is � EMBED Equation.3  ���. Restate, LRN = −2(LRr - LRu) ~ � EMBED Equation.3  ��� where LRr and LRu are respectively the maximum value of the log-likelihood values under the null hypothesis of restricted model (GARCH-N model) and the alternative hypothesis of unrestricted model (GARCH-SGT model), and m is the number of the restricted parameters in the restricted model(� EMBED Equation.3  ���) and equal to 3 in this case.
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