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Abstract

Source extraction and dimensionality reduction are important in analyzing

high dimensional and complex �nancial time series that are neither Gaussian

distributed nor stationary. A time varying independent component analysis

(TVICA) is proposed to factorize the data into a linear combination of inde-

pendent components. The key idea is to allow the ICA �lter to change over

time, and to estimate it in so-called local homogeneous intervals. The question

of how to identify these intervals is solved by the LCP (local change point)

method. Compared to a static ICA, the TVICA provides more accurate per-

formance both in simulation and real data analysis.
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1 Introduction

Source extraction and dimensionality reduction are among the primary goals of mul-

tivariate �nancial time series analysis, which helps to extract features and �nd latent

relations of risk drivers from high dimensional and complex portfolios. With increas-

ing dimension and larger piles of data, attainment of these goals can be challenging.

Conventional statistical methods based on Gaussianity and stationarity do the

job of simultaneous dimension reduction and stochastic factor identi�cation. Prin-

cipal component analysis and factor analysis are the tools here. The assumption of

stationarity and Gaussianity is questionable though for the stochastic description of

�nancial data. The Gaussian distribution cannot be used to mark tail dependence of

risk factors and it fails in providing the empirical facts like heavy tailedness, volatility

clustering and intertemporal dependence of cross moments of order higher than 2. The

practical need to retrieve the main driving stochastic factors is accentuated though in

risk management and many other �elds of applications and must be dealt with even

without distributional assumptions. An eigenvalue decomposition of returns' covari-

ance yields uncorrelated factors, see e.g. Jolli�e (2002), H�ardle and Simar (2011) and

the references therein. With the Gaussian distributional assumption, the factors are

independent and this explains why Gaussianity has been widely adopted.

A recently developed multivariate statistical method { Independent Component

Analysis (ICA) is di�erent from the conventional approaches. ICA extracts Indepen-

dent Components (ICs) using a linear �lter but does not project onto the eigenvectors
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of the covariance matrix as PCA does. A rich set of algorithms exists e.g. FastICA

proposed by Hyv�arinen and Oja (1997) and other methods in Hyv�arinen, Karhunen

and Oja (2001). The factors are estimated via solving an optimization problem, in

which the statistical cross dependence between the extracted ICs is minimized. The

dimensionality reduction feature of ICA is that it actually converts a high dimen-

sional problem to a set of univariate ones, and all components are approximately

independent. Therefore well-developed univariate methods can be applied to each

IC, without considering the dependence among the components anymore. This tech-

nique has been implemented in stock returns analysis by Back and Weigend (1998),

in risk management by Chen, H�ardle and Spokoiny (2010), in high frequency analysis

by Kouontchou and Maillet (2007), and in an intertemporal GARCH context by Wu,

Yu and Li (2006).

One essential assumption though is common to these papers: the observed series

and as well the ICs are stationary and the �lter the same for the entire time series. As

a consequence, the dynamics of cross dependence is constant over time which in light

of the ever occurring turbulences is questionable. In order to demonstrate how the

performance of ICA is a�ected, consider �rst 3 independent components, each normal-

inverse Gaussian (NIG) distributed. The NIG distributions are selected according to

the estimated parameters on three ICs obtained for the log returns of Home Depot

(HD), Hewlett-Packard (HPQ) and IBM. Two theoretical ICA �lters, A1 and A2,

that are used for generating the mixing series (Xt = AtICt), are learned from the

real �nancial returns over di�erent time periods: 3rd September 2008 to 31th August

2009 (a period with market turbulence), and 30th July 2004 to 29th December 2006

(a relatively quiet period). The �rst 300 observations are generated by using At = A1,

and the last 300 time points with At = A2. Figure 1 displays, from left to right, (a)

the estimated ICs by using the static ICA where the �lter is assumed to be constant
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Figure 1: Demonstration: The simulated series are Xt = AtICt, where At = A1 for
t = 1; � � � ; 300 and changes to A2 after then. (a) The ICs are estimated based on the
simulated series either over the whole sample. (b) The original ICs are shown. (c)
The ICs are estimated separately over each stationary sample.

At = A, (b) the theoretical values of ICs and (c) the estimated ICs by respectively

doing ICA based on the �rst 300 observations and the last 300 observations. We

observe that for case (a) the estimated ICs deviate from the theoretical values when

the estimation is done over the whole sample in the static ICA. On the other hand,

the estimated ICs in case (b) well represent the theoretical independent series when

we consider the change of the linear �lter.

The above (reality driven) example makes it clear that one not only needs a non-

Gaussian low dimensional factor extraction but also a technique that locally (in time)

identi�es us a \trust interval" over which one can safely do ICA. The importance of

identifying such an interval of approximate stationarity is often under-evaluated. The

little demonstration above indicates that TVICA is the preferable method when dy-
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namics are changing over time. Improving the quality of IC extraction for varying

intervals is the aim here. The question is of course how to identify the intervals in

practice! Matteson and Tsay (2009) gave an answer by allowing the mixing matrix

to vary over time via a smooth function of other transition variables. This idea is

similar to time-varying models proposed in the volatility and co-volatility literature,

see e.g. Baillie and Morana (2009), Scharth and Medeiros (2009). Also it resembles

time variation models incorporating changes via Markov-Switching or mixture mul-

tiplicative error speci�cations that have been proposed by e.g. Hamilton and Susmel

(1994), So, Lam and Li (1998), Lanne (2006). These techniques though take a globally

given mechanism for this time variation in contrast to e.g. Mercurio and Spokoiny

(2004) who use a local change point approach. This completely data driven approach

for �lter and homogeneity determination motivates us to develop a local estimation

approach for ICA.

Here a time varying ICA (TVICA) framework is put into action, where the mixing

matrix (linear �lter) is allowed to change over time without imposement of a global

structure. For each time point we determine a \trust interval" by conducting a

sequence of tests on a structural change. In this selected trust interval one performs

ICA. The selection is controlled by a set of critical values. The approach is di�erent

from the existing ones in the sense that it is data-driven and applicable for various

kinds of breaks (macroeconomic or political changes) with di�erent magnitudes and

abrupt or smooth types. Neither prior information (on say states of the market) nor

distributional assumption is required.

The remainder of the paper is structured as follows. The next section presents

in detail the time varying (constrained) ICA approach and the estimation proce-

dure. Section 3 investigates the performance of the proposed approach along with a

simulation study, and the real data analysis is reported in Section 4.
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2 How TVICA works

Suppose that there are p assets with log returns Xt = fx1(t); � � � ; xp(t)g
> : The aim is

to factorize the �nancial returns into a linear combination of independent components

Zt = fz1(t); � � � ; zp(t)g
>. The TVICA approach is based on:

Xt = AtZt (1)

where At is a p � p time varying matrix. In the static ICA approach, the observed

series Xt in (1) are assumed to be stationary and At = A = const i.e. to be time

homogeneous. Here the linear �lter At is time dependent and the estimation of ICs

is customized under Local Homogeneity for any time point of interest.

Local homogeneity means that, for any particular time point t there exists a past

time interval It = [t�mt; t], over which the linear �lter At is approximately constant,

i.e. As � A, 8 s 2 It. Given t and its past information, the challenge is of course to

determine It (ormt) { the trust \interval of local homogeneity". In order to rise to this

challenge, the Local Change Point (LCP) detection method of Mercurio and Spokoiny

(2004) is applied. Note that the LCP method nests the above mentioned \smooth

transition" and \regime switching" techniques used in earlier literature. Based on the

identi�ed interval, TVICA can provide more accurate performance than a constant

ICA �lter.

2.1 The LCP method

In this section, we present the LCP detection procedure to identify the interval of local

homogeneity at point t. The estimation of the TVICA is carried out via the (quasi)

maximum likelihood ICA method by treating the mixing matrix (or the inverse of
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the mixing matrix) as the unknown parameters. Suppose that at time point � , an

interval of homogeneity It = [t �mt; t] is given with mt indicating the length of the

interval. Then with pdf fj(zj) of IC zj, j = 1; � � � ; p, the pdf of X, according to

Jacobian transformation, is:

fX(x1; � � � ; xp) = f

pY
i=1

fj(zj)g � jdet Btj;

where Bt is the inverse of At. With Bt = (b1t; : : : ; bpt)
>, this gives:

fX(x1; : : : ; xp) = jdet Btj

pY
j=1

fj(b
>
jtX):

The log-likelihood function on the interval It is:

L(It; Bt) =
mtX
t=1

rX
j=1

logffj(b
>
jtXt)g+ T log jdet Btj;

and the MLE is denoted as eBt.

Relaxing this to local homogeneity on It means that Bt does not deviate too

much from a constant �lter. More precisely, using this almost constant parameter

gives roughly a small modeling bias that measures the divergence of a time varying

model to a static model, see Spokoiny (2009). Take now a family of nested intervals,

I0 � I1 � � � � � IK�1 � IK (the subscript t is omitted for notation simpli�cation),

the LCP method attempts to �nd the longest interval of local homogeneity among

them. The longer the length of intervals, the smaller the variance of the estimator

(under local homogeneity) but the higher the bias.

The identi�cation of the trust interval is done via a sequential algorithm. At the

�rst step at time t, the interval I0 is accepted. Next for an interval Ik, k = 1; � � � ; K,
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the procedure is to sequentially screen Jk = Ik n Ik�1 = [t�mk; t�mk�1] and check it

for a possible change point. The interval Ik is accepted if every point in Jk is tested to

be insigni�cant as a location of change point. One continues this way until a change

point is detected or the longest interval IK is reached. Otherwise, the algorithm is

terminated and the last accepted interval is selected.

More speci�cally in the k-th step, given Jk as the testing interval we choose I =

[t0; t00] to be a larger interval such that Jk � I. Then for each point t 2 Jk, we separate

the interval I into two sub-intervals, I 0 = [t0; t) and I 00 = [t; t00]. That is I = I 0
S
I 00

and I 0
T
I 00 = ;. Figure 2 demonstrates the relation of the intervals used in the testing

procedure. Let LI(B) be the log-likelihood function for the observations in I. The

Interval //I  Interval /I  

Interval 1/ −= kkk IIJ  

                 
/t                                                        

//t  

 

   Kmt −          kmt −                                 1−− kmt            2mt −    1mt −   t  

Figure 2: Local change point detection procedure.

LCP method employs the likelihood ratio:

TI;t = max
B00;B0

fLI00(B
00) + LI0(B

0)g �max
B

LI(B): (2)

This test statistic (2) is only calculated at one t 2 Jk. It is therefore not indicating

\a possible change point" over the whole interval Jk. To do so, the maximum (over

t) of (2) is the �nally used test statistics:

Tk = max
t2Jk

TI;t (3)

If Tk is greater than a critical value �k, the null hypothesis of local homogeneity on Ik
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is rejected. The critical values f�kg are computed in Monte Carlo simulation, since

the distributional properties of (3) are even asymptotically unknown. The details are

described in Section 2.2.

The formal de�nition of the LCP algorithm is as follows:

1. Initialization: The null is not rejected on I0. Denote the initial homogeneous

estimate by bB(0)
t = eB(0)

t .

2. Set k = 1. While Tk � �k and k � K,

update the present homogeneous estimate by bB(k)
t = eB(k)

t and set k = k + 1.

3. Final Estimate: bBt = bBk
t ; which is actually the maximum likelihood estimate

from the longest interval of local homogeneity.

It is worth mentioning that the numerical complexity of the LCP algorithm is not

high.

2.2 Selection of Hyperparameters

The LCP method is driven by a small set of \adjustable screws" or hyperparameters

that we present here.

Set of interval: The family of intervals fIkg
K
k=0 is either given or selected as:

Ik = [t�mk; t];

where mk = m0a
k with a pre-speci�ed initial length m0 and a multiplier a > 1. The

coe�cient a controls the increasing speed of the candidate intervals. The starting

value m0 should be su�ciently small to provide a reasonable local homogeneity.
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Critical values: The critical values f�kg are calculated under the null, i.e. homo-

geneity.

Under the null, one generatesM sets of independent samples and mixes them with

a constant �lter matrix A� (B� = A��1). Conventionally, the maximum likelihood

estimate over the whole sample period is used as the constant. For any r > 0 and

� > 0, the �tted log likelihood with Bt = B� for all t 2 IK satis�es:

EB� jLIk(
eBk; B

�)jr � �Rr(B
�); (4)

where LIk(
eBk; B

�) = LIk(
eBk) � LIk(B

�) and Rr(B
�) = maxk�K EB� jLIk(

eBk; B
�)jr:

Note that given the values of r and �, Rr(B
�) can be computed straightforwardly.

The parameter r speci�es the loss function (4) under the null. The parameter �

is similar to the test level parameter. Small values of � indicates that one expects a

small divergence of the estimate to a constant �lter (the null), which leads to relatively

large critical values and a rather conservative procedure for possible time variation.

Increasing � would result in a decrease of the critical values and an increase of the

sensitivity of the method to the changes of �lter in the underlying process.

In the homogeneous situation, the longest interval IK is the optimal choice. The

selected �nal estimate bB = bBK that depends on the critical values �1; � � � ; �K is

expected to perform as good as B� in the sense that a \feasible" version of (4) is

satis�ed:

EB�jLIK (
eBK ; bB)jr � �Rr(B

�); (5)

where we mimic the practical situation, i.e. the constant B� is unknown. Notice

that the sequential tests accumulate uncertainty in estimation due to the increase
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in the degrees of freedom. To take this into account, we require that at each step

k = 1; � � � ; K, the present \�nal" estimate bBk provides the prescribed performance

on the interval Ik in the sense:

EB�jLIk(
eBk; bBk)j

r �
k

K
�Rr(B

�): (6)

where bBk depends on all the critical values �1; � � � ; �k:

Now we select the critical values sequentially. At the initial step k = 0, we set

�0 =1 in agreement with the local homogeneity in the shortest interval. To specify

the next critical value �1, we set the values of �2; : : : ; �K to be in�nity. Then �1 is

selected as the minimum value to provide the prescribed performance:

EB�

���LIk

n eBk; bBk(�1; �2)
o���r � 1

K
�Rr(B

�); k = 1; : : : ; K:

We then continue to select �k given �1; : : : ; �k�1 and set �k+1 = � � � = �K = 1,

k = 2; � � � ; K. The value of �k is determined in the sense:

EB�

���LIl

n eBl; bBl(�1; : : : ; �k)
o���r � k�Rr(B

�)

K
; l = k; : : : ; K:

It is worth mentioning here that the LCP procedure is robust w.r.t. these hyper-

parameters. In a later simulation study, we will show that the performance of the

LCP detection approach is stable to the selection of these parameters.

2.3 Finding ICs in a selected interval

Given an identi�ed interval of local homogeneity, (quasi) maximum likelihood esti-

mation can be used to obtain ICs. For leptokurtic original sources, one considers the
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log density:

log fj(xj) = �1 � 2 log cosh(xj) = �1 � 2 logf
1

2
(exj + e�xj)g; (7)

where �1 is a normalizing constant to make this function a pdf. Let the derivative of

log fj be gj(xj) =
@

@xj
log fj(xj) =

f
0

j (xj)

fj(xj)
: We have:

gj(xj) = �2 tanh(xj) = �
2fexp(2xj)� 1g

exp(2xj) + 1
; 8 j = 1; : : : ; p; (8)

The motivation of this selection is that the log density is close to the absolute value

that would give Laplace density, see Hyv�arinen and Oja (1999). Moreover small

misidenti�cation in the density doesn't a�ect the local consistency of the ML estima-

tor, see Hyv�arinen et al. (2001).

3 Simulation

This section investigates the performance of the TVICA method in di�erent scenarios.

In particular, we assess its detection power under homogeneity and a situation with

a change point. Under homogeneity, LCP should select the longest interval in the

estimation of ICs. In a scenario with a change point, LCP is expected to detect a

change point, and further to locate the position of the change point properly. The

ICs are estimated from the identi�ed interval of local homogeneity. We also analyze

the impact of the hyperparameters (r; �) on the LCP algorithm. It turns out that

they have little in
uence on the performance of TVICA.

The setup of the simulation scenarios are practical. The real data (10 highly

traded stocks at NYSE) are used to generate the simulation processes. The 10 stocks
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are The Home Depot (HD), Hewlett-Packard (HPQ), IBM, Intel (INTC), Johnson

& Johnson (JNJ), JPMorgan Chase (JPM), Coca-Cola (KO), McDonald's (MCD),

3M (MMM) and Merck (MRK). First we choose the historical log returns of these

stocks over an approximately stationary time period from 7th December 2009 to

28th October 2010. Then we estimate ICs by selecting a quasi log likelihood g as

described in (8). Due to a universally good description of NIG distribution (one

heavy-tailed distribution, see Barndor�-Nielsen (1997) for more details), we assume

that the ICs are NIG distributed and estimate the distribution. Accordingly, we

generate 10 independent univariate series, with 1210 sample points for each series

and with 1000 replications. The simulated observations are obtained by mixing these

independent sources with the mixing matrix At. Two kinds of scenarios are discussed

here: a scenario under homogeneity where the matrixAt is an identity matrix and time

independent and two scenarios with a change point occurred close to the boundaries

of an interval respectively.

The set of the time intervals is de�ned with m0 = 225, a = 1:4 and K = 5, which

corresponds to the investment horizon from one year to 5 years. The parameters

(r; �) in the LCP procedure are assigned to be (0:5; 0:5) and (0:1; 0:1), where the

�rst selection is a conventional selection and the second is close to extremal. For

computation of the critical values, we �x the distribution of ICs over the whole sample

period and generate 5000 independent series, with 1210 sample points for each. When

we apply ICA for the interval Jk = Ik=Ik�1, we set I to be a superset of Jk that

also includes the neighboring 25 observations of Jk. The critical values for di�erent

scenarios are displayed in Figure 3. The critical values are decreasing corresponding

to the fact for longer interval, probability of rejecting the null increases.

The detection results are reported in Table 1. The ratio of rejecting the null over

the 1000 replications is reported. Under scenario of homogeneity, only little (6:2%
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Figure 3: Critical values for two sets of parameters: (r; �) = (0:5; 0:5) and (r; �) =
(0:1; 0:1). The computations are based on the generate oracle independent series,
with 1210 sample points for each series and with 5000 replications.

or 0:6%) is rejected. Under scenario with change point, the location of the change

point has been meaningfully detected. When the change point t = 351 is close to the

left end-point of the interval I4=I3 = [346; 593], about 99% of the interval is actually

homogeneous. In this case, one may not want to discard so many useful observations

in interval I4. The ratio of rejecting the null is 0:6% (or 0:1%) in interval I4 and 99:4%

(or 99:9%) in interval I5. Alternatively, when the change point t = 501 is around the

right boundary I4=I3 = [346;593], the ratio of rejecting the null becomes 99:7% (or

95:9%) in interval I4. Moreover, the ratio of rejecting the null under scenario with

change point, no matter where the change point is detected, is 100%: In general,

the ratio of rejecting the null is reasonable for all scenarios. We also notice that

the performance is very stable for di�erent set of (r; �), since the TVICA method is

data-driven.

14



Parameter Homogeneity Change Point at t = 351 Change Point at t = 501
(r; �) I4=I3 = [346; 593] I4=I3 = [346;593]

(0:5; 0:5) 0.062 @I4 = 0:006, @I5 = 0:994 @I4 = 0:997, @I5 = 0:003
(0:1; 0:1) 0.006 @I4 = 0:001, @I5 = 0:999 @I4 = 0:959, @I5 = 0:041

Table 1: The rejection ratio of the LCP detection tests for 1000 replications. In the
scenario of homogeneity, At is an identity matrix, while in the scenarios with change
point, the (2; 1)-component of At is changed from 0 to 2. The results show the TVICA
method can detect the local change point precisely, if existed. In addition, the method
also works well under homogeneity.

4 Real Data Analysis

In this section, we implement TVICA to 6 highly traded stocks at NYSE: The Home

Depot (HD), Hewlett-Packard (HPQ), IBM, Intel (INTC), Johnson & Johnson (JNJ)

and JPMorgan Chase (JPM). Does the proposed method detect intervals of local

homogeneity? Do we identify the intervals in a post-�nancial crisis world and in a

relatively stationary situation?

The �rst experiment considers the time interval from 30th March 2007 to 31st

August 2009, during which the stock market crash occurred in 2008. The set of

intervals for testing is de�ned as m0 = 200, a = 1:25 and K = 5. The initial

interval is I0 = [2008=11=12; 2009=08=31], over which we use the quasi likelihood

approach to estimate ICs. The results are then used to generate independent series

with 5000 replications for leaning critical values. The parameters (r; �) = (0:5; 0:5)

and (r; �) = (0:1; 0:1) are considered respectively. Again we set I to be a superset of

Jk = Ik=Ik�1 that also includes the neighboring 25 observations of Jk.

Given the sample period, we expect a detection of local change point around year

2008. The in
uence of the �nancial crisis 2008 will de�nitely remain for a long while,

however it would be interesting to ask whether the �nancial markets have reached

a new (approximately) stationary situation, though with a di�erent perspective on
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structure. If this is the case, when does the stationary world start? The test statistic

and the critical values are reported in Table 2. According to the table, we shall reject

the hypothesis of local homogeneity at the interval I2=I1, see Figure 4. In other words,

the interval [2008=09=03; 2009=08=31] is stationary.

I_2/I_1 I_1 

 

2007/03/30               2007/09/24              2008/02/12                 2008/06/05               2008/09/03     2008/11/12  2009/08/31 

Figure 4: Identi�ed interval of local homogeneity. The hypothesis is rejected at the
interval I2=I1. In other words, the interval [2008=09=03; 2009=08=31] is stationary.
The results are same for (r; �) = (0:5; 0:5) and (r; �) = (0:1; 0:1).

The other experiment considers the same stocks and uses the same parameter

selection as the �rst experiment. However, the selected sample period is di�erent, from

30th July 2004 to 29th December 2006. During this period, no in
uential economic or

�nancial events occurred so that the sample interval can be estimated as stationary.

We expect that the TVICA method select the longest interval as an interval of local

homogeneity. The test statistic and the critical values are reported in Table 2. The

results indicate that the stationarity assumptions are veri�ed for the whole time

interval.
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