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Sustainable Growth Rate, Optimal Growth Rate, and Optimal Payout 
Ratio: A Joint Optimization Approach 

 

Abstract 

Based upon flexibility dividend hypothesis DeAngelo and DeAngelo (2006), Blua 

Fuller (2008), and Lee et al. (2011) have reexamined issues of dividend policy.  

However, they do not investigate the joint determination of growth rate and payout ratio.  

The main purposes of this paper are (1) to extend Higgins’ (1977, 1981, and 2008) 

sustainable growth by allowing new equity issue, and (2) to derive a dynamic model 

which jointly optimizes growth rate and payout ratio. 

By allowing growth rate and number of shares outstanding simultaneously change 

over time, we optimize the firm value to obtain the optimal growth rate and the steady 

state growth rate in terms of a logistic equation.  We show that the steady state growth 

rate can be used as the bench mark for mean reverting process of the optimal growth rate.  

Using comparative statics analysis, we analyze how the optimal growth rate can be 

affected by the time horizon, the degree of market perfection, the rate of return on equity, 

and the initial growth rate.  In addition, we also investigate the relationship between 

stochastic growth rate and specification error of the mean and variance of dividend per 

share. 

 

 

Key Words: Dividend Policy; Payout Ratio; Growth Rate; Specification Error; Logistic 
Equation 

JEL Classification: C10, G35 
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Sustainable Growth Rate, Optimal Growth Rate, and Optimal Payout 
Ratio: A Joint Optimization Approach 

1. Introduction 

The relationship between the optimal dividend policy and the growth rate have been 

analyzed at length by Gordon (1962), Lintner (1964), Lerner and Carleton (1966), 

Modigliani and Miller (1961), Miller and Modigliani (1966), and others.  In addition, 

Higgins (1977, 1981, and 2008) derives a sustainable growth rate assuming that a firm 

can use retained earnings and issue new debt to finance the growth opportunity of the 

firm.  These authors, though pioneering in their efforts, focus on conducting their 

analyses at the equilibrium point while the focus of our paper is on analyzing the time 

path that leads to the equilibrium. 

A growing body of empirical literature focuses on the relationship between the 

optimal dividend payout policy and the growth rate.  For example, Rozeff (1982) 

showed that the optimal dividend payout is related to the fraction of insider holdings, the 

growth of the firm, and the firm’s beta coefficient.  Grullon et al. (2002), DeAngelo et al. 

(2006), and DeAngelo and DeAngelo (2006) suggest that increases in dividends convey 

information about changes in a firm’s life cycle from a higher growth phase to a lower 

growth phase.  Fama and French (2001) find that firms tend to pay dividends when they 
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experience high profitability and low growth rates by using the free cash flow hypothesis.  

Benartzi et al. (1997) and Grullon et al. (2002) show that dividend changes are related to 

the change in the growth rate and the change in the rate of return on asset. 

Based upon flexibility dividend hypothesis DeAngelo and DeAngelo (2006), Blua 

Fuller (2008), and Lee et al. (2011) have reexamined issues of dividend policy.  

However, they do not investigate the joint determination of growth rate and payout ratio.  

The main purposes of this paper are (1) to extend Higgins’ (1977, 1981, and 2008) 

sustainable growth by allowing new equity issue; and (2) to derive a dynamic model 

which jointly optimizes growth rate and payout ratio.  The present study deviates from 

earlier studies in two major aspects – First, this study presents a fully dynamic model for 

determining the optimal growth rate and the optimal dividend policy under stochastic 

conditions.  Second, the focus is on tracing the time optimal path of the relevant 

decision variables and exploring their inter-temporal dependencies.  The entire analysis 

in this paper is carried out in the stochastic control theory framework.  The focus of the 

paper is on the rigorous development of a model for maximizing the value of the firm 

revealing (1) the exact relationships between the dividend policy and the time rate of 

change in growth, the profit possibility function and their distribution parameters, (2) the 

effect of varying time horizons, stochastic initial conditions, and the degree of market 
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perfection in determining the optimal growth rate and the optimal dividend policy for the 

firm, and (3) the implications stochasticity, stationarity (in the wide and the strict sense),1 

and nonstationarity have on the rate of return and growth rate for corporate dividend 

policy decision under uncertainty. 

Section 2 develops certain essential elements necessary for the control theory model 

presented in the subsequent sections.  The fundamental model expresses a firm’s 

risk-adjusted stock price, assuming that (1) the new assets of a firm can be financed by 

new debt, external equity, and internal equity through retained earnings, (2) the rate of 

return on equity is stochastic, and (3) the growth rate varies over time.  Section 3 

presents the simultaneous solution to the optimization of the growth rate and outside 

equity financing.  The model is analyzed under the dynamic growth rate assumption, 

and the optimal time path of growth is traced.  Section 4 derives the equation for the 

optimal payout ratio from the model developed in the earlier sections.  Section 5 deals 

with the stochastic growth rate and the identification of specification error introduced in 

the results by its misspecification as deterministic.  This is followed by a short note on 

the stochasticity of the initial conditions and the final conclusions of the paper. 

 

                                                 
1 Pease see Anderson (1994). 
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2. Sustainable Growth Rate with New Equity Allowed 

The main purpose of this section is to generalize Higgins’ (1977) sustainable growth rate 

with new equity issue allowed.  To explore the relationship between the payout policy 

and the growth rate, we allow that a firm can finance growth by new debt, external equity, 

and internal equity through retained earnings, and thus leave the growth unconstrained by 

retained earnings.  Our model operate under the usual assumptions of rational investor 

behavior, zero transactions costs, and the absence of tax differentials between dividends 

and capital gains and between distributed and undistributed profits.  We further assume 

that the rate of return on equity is nonstationarily distributed and the growth rate varies 

over time.  The model to maximize price is developed under stochastic growth rate 

assumptions, but first a simplified case under a deterministic time variant growth rate is 

presented.  Under this specification neither the growth rate nor the level of assets in any 

time interval are predetermined.  Thus, the asset size at time t is 

 ( ) ( ) ( )
00 ,
t
g s ds

A t A e∫=  (1) 

where   ( )0  initial total assetA = , 

 ( ) total assets at time A t t= , 

 ( ) time variant growth rate,g t = and 

   the proxy of time in the integration. s =  
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Assuming a constant leverage ratio exist for a firm, the earnings of this firm can 

also be defined as a stochastic variable that is the product of the rate of return on equity 

times the total equity. 

 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

0

0

0

0

       0 1
1

       0 ,

t

t

t

g s ds

g s ds

g s ds

Y t ROA t A e

r t
A L e

L

r t A e

∫=

′ ∫= −
−

∫′=

 (2) 

where   ( ) earnings of the leveraged firm at time ,Y t t=  

( ) the rate of return on total asset for a leverage firm at time ,ROA t t=  

 ( ) ( )

( ) ( )2

= the rate of return on total equity at time ,
1

                       normally distributed with mean   and variance ,

ROA t
r t t

L
r t tσ

=
−  

 ( ) ( ) ( )0 1 0 the total equity at time 0,A L A′ = − =  and 

  = the debt to total assets ratio.L  

In the rest of this study, we use the firm’s earnings in terms of rate of return on equity and 

total equity. 

In addition, we denote ( ) ( )n t dn t dt= , where ( )n t  is the number of shares of 

common stock outstanding at time t.  We allow that a firm can finance its new 

investment through retained earnings, external equity, and new debt when it faces a 

growth opportunity.  We also assume a target leverage ratio for a firm by allowing that a 



 7

firm can issue a proportional debt only to meet its target leverage ratio; therefore, a firm 

can growth not only by issuing new debt, but also by retaining its earnings and issuing 

external equity.  Then, we can define the change of investment as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )00 ( )
t
g s dsdA t

A t g t A e Y t D t n t p t LA t
dt

λ∫= = = − + + , (3) 

where ( ) the total dollar dividend at time ,D t t=  

 ( ) price per share at time ,p t t=  

 degree of market perfections, 0 <   l,λ λ= ≤  

 ( ) ( )n  the proceeds of new equity issued at time ,t P t tλ =  and 

  = the debt to total assets ratioL . 

Note that the value of λ  equal to one indicates that the new shares can be sold by the 

firm at current market prices. 

Eq. (3) is a generalized equation which Higgins (1977, 1981, and 2008) uses to 

derive his sustainable growth rate.  Higgins’ equation allows only internal source and 

external debt financing.  In our model, Eq. (3) also allows external equity financing. 

The model defined in the Eq. (3) is for the convenience purpose.  If we want to 

compare our model with Higgin’s (1977) sustainable growth rate model, we need to 

modify Eq. (3) as follows: 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 1 1

1
n t p t

A t r t d t r t A t d t
L

λ⎡ ⎤ ⎡ ⎤− − = ⋅ − +⎣ ⎦⎣ ⎦ −
, (4) 
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where  ( ) the payout ratio at time .d t t=  

From Eq. (4), we can obtain the generalized sustainable growth rate as follows: 

 
( )
( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 /
( )

1 1 1 1
r t d tA t n t p t E t

g t
A t r t d t r t d t

λ⎡ ⎤−⎣ ⎦= = +
⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦

, (5) 

where  ( ) the total equity at time .E t t=  

Eq. (5) will be reduced Higgins’ (1977, 1981, and 2008) sustainable growth rate if 

( ) 0n t = .  Therefore, our model shows that Higgins’ (1977) sustainable growth rate is 

underestimated because of the omission of the source of the growth related to new equity 

issue which is the second term of our model.  In the following section, we will use joint 

optimization approach to determine optimal growth rate and the optimal payout ratio. 

 

3. Joint Optimization of Growth Rate and Payout Ratio 

From equations (2) and (3), we can obtain the dividends per share as 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

00
t
g s ds

r t g t A e n t p tD t
d t

n t n t
λ∫′⎡ ⎤− +⎣ ⎦= = . (6) 

and the mean and variance of the dividends per share can be expressed as 

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

0

0
22 2

2

0

0

t

t

g s ds

g s ds

r t g t A e n t p t
E d t

n t

A t e
Var d t

n t

λ

σ

∫′− +
⎡ ⎤ =⎣ ⎦

∫′
⎡ ⎤ =⎣ ⎦

. (7) 
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Also, we postulate a utility function of the following form2 

 ( ) ( )ad tU d t e−⎡ ⎤ = −⎣ ⎦ , where 0a > . (8) 

From the certainty-equivalent principle and the moment-generating technique,3  the 

certainty-equivalent dividend stream can be written as 

 ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

0
22 2

2

0
0ˆ

t

to
g s ds

g s dsr t g t A e n t p t
a A t e

d t
n t n t

λ
σ

⎛ ⎞∫′⎡ ⎤− +⎜ ⎟ ∫⎣ ⎦ ′ ′⎝ ⎠= − , (9) 

where ( )d̂ t  is the certainty equivalent value of ( )d t  and 2a a′ = . 

    Following Lintner (1964), we observe that the stock price should equal the present 

value of this certainty equivalent dividend stream discounted at the cost of capital, that is, 

 ( ) ( )
0

ˆ0
T ktp d t e dt−= ∫ , (10) 

where   ( )0 the stock price at the present time ,p =  

   the cost of capital,k =  and 

    the planning horizon.T =  

This is the fundamental model that will be employed in subsequent sections to derive the 

functional forms of n(t) and g(t) that simultaneously optimize ( )0p  and find the optimal 

                                                 
2 For a detailed analysis of the various utility functions see Pratt (1964).  Exponential, hyperbolic, and 
quadratic forms have been variously used in the literature but the first two seem to have preference over the 
quadratic form because the latter has the undesirable property that it ultimately turns downwards. 
3 See Simon (1956) and Theil (1957) for the certainty equivalence principle and Hogg and Craig (2004) for 
the moment generating technique. 
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growth rate and the optimal payout ratio of a firm. 

 

4. Optimal Growth Rate 

In this section, we maximize ( )0p  simultaneously with respect to the growth rate and 

the number of shares outstanding.  To a large extent, the profit possibility function for a 

firm is exogenously affected by a variety of time variant factors such as factor and 

product market conditions, but as Lintner (1964) points out, it could be conceivably 

affected by its past and present policies, say, with regard to research and development.  

The decision on the rate of investment in any time interval, however, is largely 

endogenous to the firm, ceteris paribus.  Substituting Eq. (9) into Eq. (10), we observe 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

0 0
22 2

20

0 0
0

t t
g s ds g s ds

T ktr t g t A e n t p t a A t e
p e dt

n t n t

λ σ −

⎡ ⎤∫ ∫′⎡ ⎤− + ′ ′⎢ ⎥⎣ ⎦= −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ . (11) 

To maximize Eq. (11), we observe that 

 ( ) ( ) ( ) ( )ˆ ˆ 
T Tk s t kt ks

t t
p t d s e ds e d s e ds− − −= =∫ ∫ . (12) 

From Eq. (12), we can formulate a differential equation as 

 ( ) ( ) ( ) ( )ˆdp t
p t kp t d t

dt
′= = − . (13) 

Substituting Eq. (9) into Eq. (13), we have a differential equation as 

 ( ) ( )
( ) ( ) ( )n t

p t k p t H t
n t
λ⎡ ⎤

+ − = −⎢ ⎥
⎢ ⎥⎣ ⎦

, (14) 
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where 

 ( ) ( ) ( )( ) ( ) ( )

( )
( ) ( ) ( )

( )

0 0
22 2

2

0 0
t t
g s ds g s dsr t g t A e a A t e

H t
n t n t

σ∫ ∫′− ′ ′
= − . (15) 

Solving the differential Eq. (14), we have4 

 ( )
( )

( ) ( )
kt T ks

t

ep t H s n s e ds
n t

λ
λ

−= ∫ . (16) 

Then, Eq. (17) can be obtained from equations (15) and (16) implying that the initial 

value of a stock can be expressed as the summation of present values of its earnings 

stream adjusted by the risk taken by the firm. 

( )
( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

21 2 22

0

10 0 0
0

t t
T g s ds g s ds ktp n t r t g t A e a A t n t e e dt

n
λ λ

λ σ− − −⎡ ⎤∫ ∫′ ′ ′= − −⎢ ⎥
⎣ ⎦

∫

  (17) 

We maximize the stock price per share at time 0, ( )0p , defined in Eq. (17) by 

allowing both growth rate ( )g t  and number of shares outstanding ( )n t  change over 

time.  When the growth rate ( )g t  is determined, then the amount of new investment 

can also be obtained.  Once the amount of new investment and new equity issue 

( ) ( )n t p t  are determined, then we can calculate the amount of the new debt and retained 

earnings (or dividend payout) at the same time.  Therefore, it implies that we can obtain 

                                                 
4 For the derivation of the partial differential equation, please refer to the Appendix A. 
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the optimal growth rate and the optimal payout ratio simultaneously by maximizing the 

stock price.5 

Following Euler-Lagrange condition (see Chiang, 1984), we take the first order 

conditions on Eq. (17) with respect to t for both ( )n t  and ( )g t , and set these two first 

order conditions equal to zero.6 Then we can obtain equations (18) and (19) respectively. 

 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
022 0

1

t
g s ds

a A t e
n t

r t g t
λ σ

λ

∫′ ′−
=

− −⎡ ⎤⎣ ⎦
, and (18) 

 ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

022 0
t
g s ds

a A t e
n t

g t
r t g t

g t

σ ∫′ ′
=

− −
. (19) 

From equations (18) and (19), we have 

 ( ) ( ) ( ) ( ) ( )2 2 0g t r t g t g tλ λ λ− + − = . (20) 

Under the assumption ( )r t r= , Eq. (18) is a nonlinear differential equation in g(t), 

which is the logistic equation discovered by Verhulst (1845 and 1847).  Therefore, the 

optimal growth rate ( )*g t  from Eq. (20) is 7 

                                                 
5 For example, we assume that the amount of new investment is $1,000,000, new equity issue is $200,000, 
the target debt to total asset ratio is 30%, and net income is $2,000,000.  Then we know the new debt issue 
is $1,000,000 x 30% = $300,000.  Therefore, the retained earnings will be $1,000,000 - $200,000, - 
$300,000 = $500,000.  In other words, the optimal payout ratio is ($2,000,000 - $500,000)/$2,000,000 = 
75%. 
6 Lee et al. (2011) use only Eq. (18) to derive the optimal amount of new equity issue and optimal payout 
ratio.  For the detailed derivation of equations (18) and (19), please see Appendix B. 
7 To the best of our knowledge, this is the first logistic equation derived in finance research.  For the 
detailed derivation of Eq. (21), please see Appendix C. 
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( )
( )

( ) ( )

*

2

0

0
2

0 0

1 1

        

rt

rt

rg t
r e
g
g r

g r g e

λ λ

λ λ

−

−

=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

=
+ −

, (21) 

where 0g  is the initial growth rate. 

Eq. (21) shows an optimal growth rate, ( )*g t , exists when we maximize a firm’s 

stock price per share by jointly determining the growth rate and the payout ratio.  

Therefore, different from Higgins’ (1977) sustainable growth rate model, the payout ratio 

(or retention rate) does not affect the optimal growth rate. 

5. Comparative Statics Analyses on Optimal Growth Rate 

The optimal growth rate can be determined by (1) the time horizon ( )t , (2) the 

degree of market perfection or imperfection ( )λ , (3) the rate of return on equity ( )r , 

and (4) the initial growth rate ( )0g .  In addition, the optimal growth rate is a logistic 

equation which has a special characteristic called the “mean-reverting process”.  In the 

following subsections, we will numerically and graphically show how the mean-reverting 

process of the optimal growth rate works; furthermore, we provide the sensitivity analysis 

and the partial derivatives on the optimal growth rate with respect to the time horizon 

( )t , the degree of market perfection ( )λ , the rate of return on equity ( )r , and the initial 

growth rate ( )0g .  We will discuss how these factors affect the optimal growth rate 
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respectively. 

5.1 Case I: Time Horizon 

Taking the derivative of the optimal growth rate with respect to the time, we can 

obtain Eq. (22).  

 ( ) ( ) ( )
( )

( )

2
*

0*
2

2

0

1
2

1 1

r t

r t

r rr e
gg t

g t
t r e

g

λ λ

λ λ

λ
λ

−

−

⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟⎜ ⎟−∂ ⎝ ⎠⎝ ⎠= =

∂ ⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (22) 

where ( )
( )

*

2

0

1 1 rt

rg t
r e
g

λ λ−

=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

. 

From Eq. (22), we can find that the optimal growth rate follows a mean-reverting process.  

If the initial growth rate, ( )0g , is greater than the rate of return on equity, ( )r , the 

change of the optimal growth rate, ( )*g t , is negative.  If the initial growth rate is lower 

than the rate of return on equity, the change of the optimal growth rate is positive.  If the 

initial growth rate is equal to the rate of return on equity, the change of the optimal 

growth rate is zero; therefore, the optimal growth rate is approaching the rate of return on 

equity, r , over time.  Table 1 and Figure 1 show the time path of the optimal growth 

rate from the initial conditions ( 0g ) to its steady state value. 

<Insert Table 1> 

<Insert Figure 1> 
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The important implications of the results derived from Eq. (22) and partially graphed in 

Figure 1 are as follows: 

(i) Under a finite time horizon, 

( ) ( )
( ) ( )
( ) ( )

* *
0

* *
0

* *
0

 and 0  when  

 and 0  when  

 and 0  when  

g t r g t g r

g t r g t g r

g t r g t g r

= = =

< < <

> > >

. 

(ii) When time horizon approaches infinity, the optimal growth rate approaches the 

steady state value of r . 

(iii) The greater the degree of imperfection in the market, as indicated by a lower value 

of ( ),  0 1λ λ< < , the slower the speed with which the firm attains the steady state 

optimal growth rate.  One feasible reason is that the firm can issue additional equity 

only at a price lower than the current market price indicated by the value of 1λ < . 

5.2 Case II: Degree of Market Perfection 

Taking the derivative of the optimal growth rate with respect to the degree of market 

perfection, λ , we can obtain Eq. (23). 

 
( )

( )

( )
( )

2
2*

0
2

2

0

21
2

1 1

r t

r t

r rte
gg t

r e
g

λ λ

λ λ

λ
λ

−

−

⎛ ⎞
−⎜ ⎟

∂ −⎝ ⎠=
∂ ⎡ ⎤⎛ ⎞

− −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (23) 

where ( )
( )

*

2

0

1 1 rt

rg t
r e
g

λ λ−

=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

. 
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We find that the sign of Eq. (23) depends on the sign of 
0

1r
g

⎛ ⎞
−⎜ ⎟

⎝ ⎠
.  If the initial growth 

rate is less than the rate of return on equity, Eq. (23) is positive; therefore, the optimal 

payout ratio at time t tends to be closer to the rate of return on equity if the degree of 

market perfection increases.  Comparing Figure 1.a and Figure 1.c to Figure 1.b and 

Figure 1.d, we can find when the degree of market perfection is 0.95, the optimal growth 

rate will converge to its target rate (rate of return on equity) after 20 years.  When the 

degree of market perfection is 0.60, the optimal growth rate cannot converge to its target 

rate (rate of return on equity) even after 30 years.  Figure 2 shows the optimal growth 

rates of different rates of return on equity and degrees of market perfection when the 

initial growth rate is 5% and the time is 3.  We find that the more perfect the market is, 

the faster the optimal growth rate adjusts; thus, the mean-reverting process of the optimal 

growth rate is faster if the market is more perfect. 

<Insert Figure 2> 

5.3 Case III: Rate of Return on Equity 

Taking the derivative of the optimal growth rate with respect to the rate of return on 

equity, r , we can obtain Eq. (24). 
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( )

( )( ) ( ) ( )
( )

( ) ( )

2 2
0 0 0*

22
0 0

1
2

rt rt

rt

tg g e g r re
g t

r g r g e

λ λ λ λ

λ λ

λ
λ

− −

−

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤− + −⎨ ⎬⎢ ⎥⎣ ⎦ −∂ ⎪ ⎪⎣ ⎦⎩ ⎭=
∂ ⎡ ⎤+ −⎣ ⎦

, (24) 

where ( )
( ) ( )

* 0
2

0 0
rt

g rg t
g r g eλ λ−=
− −

. 

Because the degree of market perfection ( )λ  is between zero and one, 
( )2

tλ
λ −

 is 

negative, and ( )2r teλ λ′ −  is between zero and one.  The sign of Eq. (24) is therefore 

positive when the initial growth rate is less than the rate return on equity.  That is, in 

order to catch up to the higher target rate, a firm should increase its optimal growth rate.  

We further provide a sensitivity analysis to investigate the relationship between the 

change in the optimal growth rate and the change in the rate of return on equity.  Panel 

A and C of Table 1 and Figure 1.a and Figure 1.c present the mean-reverting processes 

of the optimal growth rate when the rate of return on equity is 40%.  Panel B and Panel 

D of Table 1 and Figure 1.b and Figure 1.d present those when the rate of return on 

equity is 50%.  We find that, holding the other factors constant, the optimal growth rate 

under a 50% rate of return on equity is higher than the optimal growth rate under a 40% 

rate of return on equity.  Figure 2 shows that, under different degrees of market 

perfection, the optimal growth rates increase when the rate of return on equity increases; 

therefore, when the rate of return on equity increases, the optimal growth rates increase 

under different conditions of initial growth rates, time horizons, and degrees of market 
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perfections. 

5.4 Case IV: Initial Growth Rate 

Taking the derivative of the optimal growth rate with respect to the initial growth 

rate, 0g , we can obtain Eq. (25). 

 
( )

( )

( )

2
2

*
0

2
0 2

0

1 1

rt

rt

r e
g t g

g r e
g

λ λ

λ λ

−

−

⎛ ⎞
⎜ ⎟∂ ⎝ ⎠=

∂ ⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (25) 

where ( )
( )

*

2

0

1 1 rt

rg t
r e
g

λ λ−

=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

. 

We can easily determine that the sign of Eq. (25) is positive.  From Table 1, we can also 

find the higher optimal growth rate if the initial growth rate is higher.  Figure 1 shows 

that the line of the optimal growth rate over time does not cross over each other, meaning 

that the mean-reverting process of the optimal growth rate under an initial growth rate far 

from the objective value cannot be faster than that under an initial growth rate closer to 

the objective value. 

From Eq. (21), we know that the optimal growth rate is not affected by payout ratio.  

It is only affected by the time horizon ( )t , the degree of market perfection or 

imperfection ( )λ , the rate of return on equity ( )r , and the initial growth rate ( )0g .  

This might imply that the sustainable growth rate instead of optimal growth rate is 
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affected by payout ratio.  In the following section, we will develop the optimal dividend 

payout policy in terms of optimal growth rate. 

 
6. Optimal Dividend Policy 

In this section, we address the problem of an optimum dividend policy for the firm.  

Using the model developed in the earlier sections, we maximize p(0) simultaneously with 

respect to the growth rate and the number of shares outstanding.  We can derive a 

general form for the optimal payout ratio as follows:8 

( )
( )

( )
( )

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

*
0

*

2 2 * * 2 *

32 *

1

            1
2

t
kt g s ds

D t g t
Y t r t

t t g t r g t t g t
e W

t r g t

λ

λλ

λ σ σ σ

λ σ

−

−

⎡ ⎤
= − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤+ − +⎡ ⎤ ⎣ ⎦∫⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦ − −⎣ ⎦

, (26) 

where 
( ) ( ) ( )( )

*
0

212 *
s

T g u du ks

t
W e s r g s ds

λλ λσ
−− −∫= −∫ . 

Eq. (26) implies that the optimal payout ratio of a firm is a function of the optimal 

growth rate ( )*g t , the change in optimal growth rate ( )*g t , the rate of return on equity 

r , the degree of market perfection λ , the cost of capital k , the risk of the rate of return 

on equity ( )2 tσ , and the change in the risk of rate of the return on equity ( )2 tσ .  

Previous empirical studies find that a firm’s dividend policy is related to the firm’s risk, 

growth rate, and proxies of profitability, such as the rate of return on assets and the 

                                                 
8 For the detailed derivation of Eq. (26), please see the Appendix D. 
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market-to-book ratio (e.g., Benartzi et al., 1997; DeAngelo et al., 2006; Denis and 

Osobov, 2008; Fama and French, 2001; Grullon et al., 2002; and Rozeff, 1982).  These 

studies, however, omit some important factors such as the degree of market perfection, 

the cost of capital, the rate of return on equity, the change in the growth rate, and the 

change in risk; therefore, our theoretical model implies that previous researchers might 

have used misspecified models to conduct their empirical research. 

 

7. Stochastic Growth Rate 

In this section we will discuss how the stochastic growth affect the specification error 

associated with expected dividend which has been defined in Eq. (7).  We also discuss 

the implication of stochastic initial growth rate on the optimal growth rate. 

7.1 Stochastic Growth Rate and Specification Error 

We here attempt to identify the possible error in the optimal dividend policy introduced 

by misspecification of the growth rate as deterministic.  Lintner (1964) explicitly 

introduced uncertainty of growth in his valuation model.  The uncertainty is shown to 

have two components – one derived from the uncertainty of the rate of return and, second, 

from the increase in this uncertainty as a linear function of futurity.  In the present 

analysis we introduced a fully dynamic time variant growth rate to clearly see the impact 
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of its stochasticity on the optimal dividend policy. 

With the stochastic rate of return on equity, ( ) ( ) ( )( )2,r t N r t tσ∼ , the asset size 

and the growth rate for any time interval also become stochastic.  This can be seen 

more clearly by rewriting Eq. (3) explicitly in the growth form as follows: 

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( )1
A t n t p t

g t br t
A t L A t

λ
= = +

−
,  (27) 

where b is the retention rate and ( ) ( )1 L A t−  is the total equity at time t.  Therefore, the 

growth rate of a firm is related not only to how much earnings it retains, but also to how 

many new shares it issues. 

Thus, with a stochastic rate of return, the growth rate in Eq. (27) also becomes 

stochastic, ( ) ( ) ( )( )2, gg t N g t tσ∼ .  A further element of stochasticity in ( )g t  is 

introduced by the stochastic nature of λ  indicating the uncertainty about the price at 

which new equity can be issued relative to p(t).  Misspecification of the growth rate as 

deterministic in the earlier sections introduced an error in the optimal dividend policy, 

which we now proceed to identify.  Reviewing equations (1) to (4) under a stochastic 

growth rate specification, we derive from Eq. (4) the expression Eq. (31) as follows: 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

0
  

t
g s ds

r t g t A o e n t p tD t
d t

n t n t
λ∫′⎡ ⎤− +⎣ ⎦= =  (28) 

It may be interesting to compare this model with the internal growth models.  
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Notice that if the external equity financing is not permissible, the growth rate, Eq. (27), is 

equal to the retention rate times the profitability rate, as in Lintner (1964) and Gordon 

(1963).  Also, notice that under the no external equity financing assumption, Eq. (28) 

reduces to ( ) ( )
0

  
 

t
g s ds

od t d e∫= , which is Lintner’s Eq. (8) with the only difference that, in 

our case, the growth rate is an explicit function of time. 

To carry the analysis further under a time variant stochastic growth rate, we derive 

the mean and variance of ( )d t  as follows: 

 
( )

( ) ( )( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

0

0 0,
                  

t

t t

g s ds

g s ds g s ds

r t g t A o e n t p t
E d t

n t

Cov r t A o e E t e

n t

λ

ε

⎡ ⎤∫′− +⎢ ⎥
⎣ ⎦⎡ ⎤ =⎣ ⎦

⎛ ⎞ ⎡ ⎤∫ ∫′ +⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦−

 (29a) 

 and 

 ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )

0

0

2
22 2

2

Var
Var

t

t g s ds
g s ds A o t e

A o t e
d t

n t n t

ε
σ

⎡ ⎤∫′ ⎢ ⎥∫′ ⎣ ⎦⎡ ⎤ = +⎣ ⎦ , (29b) 

where ( ) ( ) ( )t g t g tε = − . 

Comparing Eq. (29) and Eq. (7), we observe that both the mean and the variance of 

( )d t  will be subject to specification error if the deterministic growth rate is 

inappropriately employed.   Eq. (29a) implies that the numerator in the equation for the 
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optimal payout ratio has the following additional element:  

 
( ) ( ) ( ) ( ) ( )

( )

0 0Cov ,
t t
g s ds g s ds

r t A o e E t e

n t

ε
⎛ ⎞ ⎛ ⎞∫ ∫− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ . (30) 

Now notice that the second term in the expression of Eq. (30) tends to be dominated more 

and more by the first term as the time t approaches to infinity.9 

      Thus, the direction of error introduced in the optimal payout ratio when the 

growth rate is arbitrarily assumed to be non-stochastic increasingly depends upon the size 

of the covariance term in Eq. (30).  If the covariance between the rate of return on equity 

and the growth rate is positive, the optimal payout ratio under the stochastic growth rate 

assumption would be lower even if the rate of return for the firm increases over time.  In 

other words, the payout ratio in section 4 under the deterministic growth rate assumption 

is an over-estimate of the optimal payout ratio.  On the other hand, if the covariance 

between the rate of return on equity and the growth rate is negative (that is, the higher the 

                                                 
9 From Astrom (2006), we also know that 

( ) ( ) ( ) ( )
0 0plim plim plim
t t
g s ds g s ds

s s s
s e s eε ε

→∞ →∞ →∞

⎡ ⎤ ⎡ ⎤∫ ∫⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

, (A) 

( ) ( )
0 0plim
t t
g s ds g s ds

s
e e

→∞

⎡ ⎤∫ ∫=⎢ ⎥
⎣ ⎦

. (B) 

Substituting (B) into (A), we have 

( ) ( ) ( ) ( )0 0

s s
plim plim 0

t t
g s ds g s dt

s e e sε ε
→∞ →∞

⎡ ⎤∫ ∫ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎣ ⎦

. 
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growth rate, the lower the rate of return on equity), the payout ratio derived in the 

preceding section is an under-estimate of the optimal payout ratio. 

7.2 Stochastic Initial Conditions 

At this point a note on the stochasticity of the initial conditions and the significance of the 

time path of the growth rate is also in order.  From the specification of the stochastic 

growth rate in the previous sub-section, it can be argued that the initial growth rate ( )og  

in Eq. (21) and illustrated in Figure 1 is chosen by the management taking into account 

the uncertainty of the time path of return and its distribution parameters ( ) ( )( )2,r t tσ .  

Therefore, the determination of the initial growth rate is also stochastic, implying that 

og r=  can happen only in the expectation sense.  Since og r=  is only one point from 

the entire distribution, there is only a small probability that the steady value of the 

optimal growth rate happens and that the optimal growth rate does not change over time.  

This further brings out the importance of analyzing the time path of the growth rate as it 

approaches the steady state value from the initia1 stochastic conditions.  We feel that 

significant progress in financial decision making based on the detailed analysis of 

equilibrium values of the underlying parameters has been made in the literature, thanks to 

the pioneering efforts by Modigliani and Miller (1961), Gordon (1962), and Lintner 

(1964), to name only a few.  Further research, however, needs to be done in tracing the 
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time path leading to these steady state values of parameters under uncertainty. 

8. Summary and Conclusion Remarks 

Our concern in this paper has been to sharpen the focus on corporate decisions 

concerning the optimal growth and dividend payout policies.  The interdependence of 

corporate decisions on these two important policy variables is explicitly recognized in 

deriving the simultaneous solution to the problem of maximizing the present value of the 

firm.  In more detail, we examine the time path of the optimal growth rate, starting from 

the stochastic initial conditions, and approaching its steady state value.  Important 

insights into the effects of the degree of market perfection, rate of return on equity, and 

initial growth rate on the optimal growth rate are also developed.  Furthermore, we 

derive the optimal payout policy under most genera1 conditions with regard to the market 

imperfection, nonstationarity, and the stochasticity of the growth rate and the profitability 

rate.  In particular, the error introduced in the optimal payout ratio by misspecification 

of the growth rate as deterministic is identified and shown to relate to its initial stochastic 

conditions.  Finally, the model developed in this paper brings out explicitly the influence 

of riskiness of a non-stationary profitability rate on the optimal dividend policy.  

Important work, as mentioned earlier, in determining the optimal equilibrium values of 

corporate decision variables has been done by Gordon (1962), Lintner (1964), Modigliani 
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and Miller (1961), Miller and Modigliani (1966), DeAngelo et al. (1996), Fama and 

French (2001), DeAngelo and DeAngelo (2006), and Lee et al. (2011).  The need, 

however, for further research in tracing the optimal time path under uncertainty leading to 

these equilibrium values and the relevant stability conditions remains, and the present 

paper is a modest step forward in that direction. 
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Appendix A. Derivation of Equation (16) 

This appendix presents a detailed derivation of the solution to the variable partial 

differential equation, Eq. (14), which is similar to Gould’s (1968) Eq. (9) in investigating 

the adjustment cost.  Following Gould’s (1968) approach, we first derive a general 

solution for a standard variable partial differential equation.  Then we apply this general 

equation to solve Eq. (14).  The standard variable partial differential equation can be 

defined as: 

 ( ) ( ) ( ) ( )p t g t p t q t+ =   (A.1) 

As a particular case of Eq. (A.1), the equation 

 ( ) ( ) ( ) 0p t g t p t+ =  or ( ) ( )
( )

p t g t
p t

= −  (A.2) 

has a solution 

 ( )( ) exp ( )p t c g t dt= ⋅ −∫ . (A.3) 

By substituting constant c  with function ( )c t , we have the potential solution to Eq. 

(A.1) 

 ( )( ) ( ) exp ( )p t c t g t dt= ⋅ −∫ . (A.4) 

Taking a differential with respect to t , we obtain: 
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( ) ( )
( )

( ) ( ) exp ( ) ( ) exp ( ) ( )

      ( ) exp ( ) ( ) ( )

p t c t g t dt c t g t dt g t

c t g t dt p t g t

= ⋅ − − ⋅ −

= ⋅ − −

∫ ∫
∫

 (A.5) 

Therefore, 

 ( )( ) ( ) ( ) ( ) exp ( )p t p t g t c t g t dt+ = ⋅ −∫ . (A.6) 

From equations (A.1) and (A.6), we have 

 ( )( ) exp ( ) ( )c t g t dt q t⋅ − =∫ .              (A.7) 

Equivalently,                                                           

 ( )( ) ( ) exp ( )c t q t g t dt= ⋅ ∫ . (A.8) 

Therefore, 

 ( )( ) ( ) exp ( )c t q t g t dt dt= ⋅∫ ∫ . (A.9) 

Substituting Eq. (A.9) into Eq. (A.3), we have the general solution of Eq. (A.1), 

 ( ) ( )( ) exp ( ) ( ) exp ( )p t g t dt q t g t dt dt⎡ ⎤= − ⋅ ⎣ ⎦∫ ∫ ∫ . (A.10) 

To solve Eq. (12), we will apply the above result.  Let ( )( )
( )

n tg t k
n t

λ= −  and 

( ) ( )q t H t= − . 

Since 
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( )

( )
1

1

( )exp ( ) exp
( )

( )                     exp
( )

                     exp ln( ( ))

                     ( ) exp( ),
where 0.

n tg t dt k dt
n t

n t dt kt
n t
n t kt c

c n t kt
c

λ

λ

λ

λ

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

= − +

= ⋅ −
>

∫ ∫

∫
 (A.11) 

Then we have, 

 2 3

2 3

( ) ( ) exp( ) ( ) ( ) exp( ) ,

where 0, and 0

P t c n t kt q t c n t kt dt

c c

λ λ− ⎡ ⎤= ⋅ ⋅ ⋅ −⎣ ⎦
> >

∫  (A.12)  

or equivalently,  

 4

4

e ( )( ) ( ) ,
( )

where 0.

kt

kt

n tP t c H t dt
n t e

c

λ

δ

⎡ ⎤
= ⋅ ⋅ −⎢ ⎥

⎣ ⎦
>

∫  (A.13) 

Finally, we have 

 e( ) ( ) ( )
( )

kt
ktP t c H t n t e dt

n t
λ

λ
−= ⋅ ∫ , (A.14) 

Changing from an indefinite integral to a definite integral, Eq. (A.13) can be shown as 

 ( ) ( ) ( )
( )

kt T ks

t

ep t H s n s e ds
n t

λ
λ

−= ∫ , 

which is Eq. (16). 
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APPENDIX B. Derivation of Equation (20) 

This appendix presents a detailed procedure for deriving Eq. (20).  Following 

Euler-Lagrange condition (see Chiang, 1984), we first take the first order condition on Eq. 

(17) with respect to t allowing only ( )n t  and ( )g t  to change over time, and set the first 

order condition equal to zero.  Then we obtain 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

2

0

32 2

0

0
1 0 exp

               0 2 exp 2 0

t

t

p
n t n t r t g t A g s ds

t

a A t n t n t g s ds

λ

λ

λ

σ λ

−

−

∂
′= − −⎡ ⎤⎣ ⎦∂

′ ′− − =

∫

∫
 (B.1) 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

0

1

0

1 2

0

22 2

0

0
0 exp

               0 exp

               0 exp

               2 0 exp 2 0

t

t

t

t

p
n t r t A g t g s ds

t

n t A g t g s ds

n t A g t g s ds

a A t n t g t g s ds

λ

λ

λ

λσ

−

−

−

−

∂ ⎡ ′= ⎢⎣∂

′−

⎤′− ⎥⎦
⎡ ⎤′ ′− =⎢ ⎥⎣ ⎦

∫

∫

∫

∫

 (B.2) 

After rearranging equations (B.1) and (B.2), we can obtain equations (18) and (19). 

 ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

0
2 0 exp

1

t
a A t g s ds

n t
r t g t

λ σ

λ

′ ′−
=

− −⎡ ⎤⎣ ⎦

∫
 (16) 

 ( )
( ) ( ) ( )( )
( ) ( ) ( )

( )

2

0
2 0 exp

t
a A t g s ds

n t
g t

r t g t
g t

σ′ ′
=

− −

∫
 (17) 

Therefore, from equations (18) and (19), we can derive the following well-known logistic 

differential equation as 
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 ( ) ( ) ( ) ( ) ( )2 2 0g t r t g t g tλ λ λ− + − = . (20) 
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APPENDIX C. Derivation of Equation (21) 

This appendix presents a detailed derivation of the solution to the Eq. (21).  To solve 

partial differential equation, Eq. (20), which is a logistic equation (or Verhulst model) 

first published by Pierre Verhulst (1845 and 1847).  To solve the logistic equation, we 

first rewrite Eq. (20) as a standard form of logistic equation. 

 ( ) ( ) ( )
1

dg t g t
Ag t

dt B
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. (C.1) 

where 

 
( )2

rA λ
λ

=
−

 and B r= . 

Using separation of variables to separate g and t: 

 

( )

( ) ( )

( )
( )

( )

( )

1

     
1

dg t
Adt

g t
g t

B

dg t
dg t B
g t g t

B

=
⎛ ⎞
−⎜ ⎟

⎝ ⎠

= +
⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (C.2) 

We next integrate both sides of Eq. (C.2), 

 ( )( ) ( )
ln ln 1

g t
At C g t

B
⎛ ⎞

+ = − −⎜ ⎟
⎝ ⎠

. (C.3) 

Taking the exponential on both sides of Eq. (C.3), 

 ( ) ( )
( )exp

1

g t
C At

g t
B

⋅ =
−

. (C.4) 
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When 0t = , ( ) 0g t g=  and Eq. (C.4) can be written as 

 0 0

0 01

g BgC g B g
B

= =
−−

. (C.5) 

Substitute Eq. (C.5) into Eq. (C.4), 

 ( ) ( )
( )

0

0

exp
1

g tBg At
g tB g

B

⋅ =
−

−
. (C.6) 

Solving for ( )g t , 

 

( )
( )

( )

( )
( )

( ) ( )

0

0

0

0

0

0 0

0

0 0

exp

exp
1

exp
      

exp

      
exp

Bg At
B gg t Bg At

B g
B

Bg At
B g g At

Bg
g B g At

−
=

−
+

=
− +

=
+ − −

. (C.7) 

Substitute 
( )2

rA λ
λ

=
−

 and B r=  into Eq. (C.7), we finally can get the solution of Eq. 

(20), 

 ( ) ( )

0

1

1 1 exp
2

r
L

g t
r rt
g

λ
λ

−
=

⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

, 

which is Eq. (21). 
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APPENDIX D. Derivation of Equation (26) 

This appendix presents a detailed derivation of Eq. (26).  To obtain the expression for 

optimal n(t), given ( )r t r= , we substitute Eq. (21) into Eq. (18) and obtain 

 ( ) ( ) ( ) ( ) ( )

( ) ( )( )

*
02

*

2 0
1

t
g s ds

a A t e
n t

r g t
λ σ

λ

∫′ ′−
=

− −
. (D.1) 

From equations (15), (18), and (21), we have 

 ( )
( )( ) ( )
( )( )

2*

22

1

2

r g t
H t

a t

λ

σ λ

− −
=

′ −
. (D.2) 

Substituting equations (D.1) and (D.2) into Eq. (16) we obtain 

 ( )
( ) ( )

( )
( ) ( )( )2*

2 2

1
2

kt T ks

t

n sep t r g s e ds
sn t a

λ

λ

λ
σλ

−
⎛ ⎞−⎜ ⎟= −
⎜ ⎟′ −⎝ ⎠

∫  or 

 ( )
( ) ( ) ( )( )
( ) ( )

*
0 *

22

1

2

t
kt g s ds

e r g t
p t W

t a

λλ

λ

λ

σ λ

−⎡ ⎤∫ − −⎢ ⎥= ⎢ ⎥′ −⎢ ⎥⎣ ⎦

, (D.3) 

where 
( ) ( ) ( )( )

*
0

212 *
s

T g u du ks

t
W e s r g s ds

λλ λσ
−− −∫= −∫ . 

From Eq. (D.1), we have 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )( )

* *
0 0

*
0

2 2 *

*

2 *

2*

2 0 2 0
1

2 0
         

1

t t

t

g s ds g s ds

g s ds

a A t e a A t g t e
n t

r g t

a A t e g t

r g t

λ σ λ σ
λ

λ σ

λ

∫ ∫′ ′ ′− + −
=

− −

∫′ ′−
+

− −

. (D.4) 

From equations (D.3) and (D.4), we have the amount generated from the new equity issue 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
*

0

2 2 * * 2 *
2

21 *

0

2

                 
t

kt g s ds

A
n t p t t t g t r g t t g t

t

e r g t W

λ

λλ

σ σ σ
σ λ

−− −

⎡ ⎤= + − + ⋅⎣ ⎦−

⎡ ⎤∫ −⎢ ⎥
⎣ ⎦

 (D.5) 

From equations (1), (6), and (D.5), we can obtain ( ) ( ) ( )D t n t d t=  and 

( ) ( ) ( ) ( )
00
t
g s ds

Y t r t A e∫= .  Therefore, the optimal payout ratio can be written as 

( )
( )

( )
( )

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

*
0

*

2 2 * * 2 *

32 *

1

            1
2

t
kt g s ds

D t g t
Y t r t

t t g t r g t t g t
e W

t r g t

λ

λλ

λ σ σ σ

λ σ

−

−

⎡ ⎤
= − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤+ − +⎡ ⎤ ⎣ ⎦∫⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦ − −⎣ ⎦

 (26) 

where 
( ) ( ) ( )( )

*
0

212 *
s

T g u du ks

t
W e s r g s ds

λλ λσ
−− −∫= −∫ . 
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Table 1. Mean-reverting process of the optimal growth rate 
This table shows the mean-reverting process of the optimal growth rate for thirty years.  Panel A presents the 
values of the optimal growth rate under different settings of the initial growth rate when the rate of return on 
equity is equal to 40% and the degree of market perfection is equal to 0.95.  Panel B presents the values of the 
optimal growth rate when the rate of return on equity is equal to 40% and the degree of market perfection is 
equal to 0.60.  Panel C presents the values of the optimal growth rate when the rate of return on equity is equal 
to 50% and the degree of market perfection is equal to 0.95.  Panel D presents the values of the optimal growth 
rate when the rate of return on equity is equal to 50% and the degree of market perfection is equal to 0.60 
 

Panel A.  ROE = 40% 
         λ =0.95 
Time (t)  

0g = 5% 0g = 10% 0g = 15% 0g = 20% 0g = 25% 0g = 30% 0g = 35% 0g = 40% 
1  0.0681 0.1295 0.1851 0.2358 0.2821 0.3246 0.3638 0.4000 
2  0.0910 0.1630 0.2212 0.2694 0.3099 0.3443 0.3741 0.4000 
3  0.1189 0.1987 0.2560 0.2990 0.3326 0.3595 0.3816 0.4000 
4  0.1512 0.2346 0.2874 0.3239 0.3505 0.3709 0.3870 0.4000 
5  0.1864 0.2682 0.3142 0.3437 0.3642 0.3793 0.3909 0.4000 
6  0.2225 0.2981 0.3361 0.3591 0.3744 0.3854 0.3936 0.4000 
7  0.2571 0.3231 0.3533 0.3706 0.3818 0.3897 0.3955 0.4000 
8  0.2884 0.3431 0.3663 0.3790 0.3872 0.3928 0.3969 0.4000 
9  0.3151 0.3586 0.3759 0.3852 0.3910 0.3949 0.3978 0.4000 

10  0.3368 0.3702 0.3829 0.3896 0.3937 0.3965 0.3985 0.4000 
11  0.3538 0.3788 0.3879 0.3927 0.3956 0.3975 0.3989 0.4000 
12  0.3666 0.3850 0.3915 0.3949 0.3969 0.3983 0.3993 0.4000 
13  0.3762 0.3894 0.3941 0.3964 0.3978 0.3988 0.3995 0.4000 
14  0.3831 0.3926 0.3958 0.3975 0.3985 0.3992 0.3996 0.4000 
15  0.3881 0.3948 0.3971 0.3983 0.3989 0.3994 0.3997 0.4000 
16  0.3916 0.3964 0.3980 0.3988 0.3993 0.3996 0.3998 0.4000 
17  0.3941 0.3975 0.3986 0.3992 0.3995 0.3997 0.3999 0.4000 
18  0.3959 0.3982 0.3990 0.3994 0.3996 0.3998 0.3999 0.4000 
19  0.3971 0.3988 0.3993 0.3996 0.3998 0.3999 0.3999 0.4000 
20  0.3980 0.3980 0.3991 0.3995 0.3997 0.3998 0.3999 0.4000 
21  0.3986 0.3986 0.3994 0.3997 0.3998 0.3999 0.3999 0.4000 
22  0.3990 0.3996 0.3998 0.3999 0.3999 0.4000 0.4000 0.4000 
23  0.3993 0.3997 0.3998 0.3999 0.3999 0.4000 0.4000 0.4000 
24  0.3995 0.3998 0.3999 0.3999 0.4000 0.4000 0.4000 0.4000 
25  0.3997 0.3999 0.3999 0.4000 0.4000 0.4000 0.4000 0.4000 
26  0.3998 0.3999 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 
27  0.3998 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 
28  0.3999 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 
29  0.3999 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 
30  0.3999 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 
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Panel B.  ROE = 40% 
         λ =0.60 
Time (t)  

0g = 5% 0g = 10% 0g = 15% 0g = 20% 0g = 25% 0g = 30% 0g = 35% 0g = 40% 
1  0.0580 0.1134 0.1664 0.2171 0.2657 0.3123 0.3570 0.4000 
2  0.0670 0.1278 0.1832 0.2340 0.2805 0.3235 0.3632 0.4000 
3  0.0771 0.1432 0.2003 0.2503 0.2944 0.3335 0.3685 0.4000 
4  0.0884 0.1593 0.2174 0.2660 0.3072 0.3425 0.3731 0.4000 
5  0.1007 0.1760 0.2343 0.2808 0.3188 0.3504 0.3771 0.4000 
6  0.1142 0.1930 0.2506 0.2947 0.3294 0.3574 0.3806 0.4000 
7  0.1287 0.2101 0.2663 0.3074 0.3388 0.3635 0.3835 0.4000 
8  0.1441 0.2271 0.2811 0.3190 0.3471 0.3688 0.3860 0.4000 
9  0.1602 0.2437 0.2949 0.3296 0.3545 0.3734 0.3881 0.4000 

10  0.1769 0.2597 0.3077 0.3390 0.3610 0.3773 0.3900 0.4000 
11  0.1940 0.2749 0.3193 0.3473 0.3666 0.3807 0.3915 0.4000 
12  0.2111 0.2891 0.3298 0.3547 0.3715 0.3837 0.3928 0.4000 
13  0.2281 0.3023 0.3391 0.3611 0.3757 0.3861 0.3939 0.4000 
14  0.2446 0.3144 0.3475 0.3667 0.3794 0.3883 0.3949 0.4000 
15  0.2606 0.3254 0.3548 0.3716 0.3825 0.3901 0.3957 0.4000 
16  0.2757 0.3352 0.3612 0.3758 0.3851 0.3916 0.3964 0.4000 
17  0.2899 0.3440 0.3668 0.3794 0.3874 0.3929 0.3969 0.4000 
18  0.3031 0.3518 0.3717 0.3825 0.3893 0.3940 0.3974 0.4000 
19  0.3151 0.3586 0.3759 0.3852 0.3910 0.3949 0.3978 0.4000 
20  0.3260 0.3645 0.3795 0.3874 0.3924 0.3957 0.3982 0.4000 
21  0.3358 0.3697 0.3826 0.3894 0.3935 0.3964 0.3984 0.4000 
22  0.3445 0.3742 0.3852 0.3910 0.3946 0.3970 0.3987 0.4000 
23  0.3522 0.3780 0.3875 0.3924 0.3954 0.3974 0.3989 0.4000 
24  0.3589 0.3813 0.3894 0.3936 0.3961 0.3978 0.3991 0.4000 
25  0.3648 0.3841 0.3910 0.3946 0.3967 0.3982 0.3992 0.4000 
26  0.3700 0.3866 0.3924 0..954 0.3972 0.3985 0.3993 0.4000 
27  0.3744 0.3886 0.3936 0.3961 0.3977 0.3987 0.3994 0.4000 
28  0.3782 0.3904 0.3946 0.3967 0.3980 0.3989 0.3995 0.4000 
29  0.3815 0.3918 0.3954 0.3972 0.3983 0.3991 0.3996 0.4000 
30  0.3843 0.3931 0.3961 0.3977 0.3986 0.3992 0.3997 0.4000 
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Panel C.  ROE = 50% 
         λ =0.95 
Time (t)  

0g = 5% 0g = 10% 0g = 15% 0g = 20% 0g = 25% 0g = 30% 0g = 35% 0g = 40% 
1  0.0743 0.1411 0.2013 0.2559 0.3056 0.3511 0.3929 0.4314 
2  0.1077 0.1909 0.2572 0.3111 0.3560 0.3938 0.4261 0.4541 
3  0.1508 0.2464 0.3124 0.3607 0.3796 0.4268 0.4503 0.4698 
4  0.2021 0.3021 0.3618 0.4014 0.4297 0.4508 0.4672 0.4803 
5  0.2581 0.3530 0.4022 0.4324 0.4528 0.4675 0.4786 0.4873 
6  0.3132 0.3953 0.4331 0.4548 0.4689 0.4789 0.4862 0.4919 
7  0.3625 0.4279 0.4552 0.4703 0.4798 0.4863 0.4911 0.4948 
8  0.4028 0.4516 0.4706 0.4807 0.4869 0.4912 0.4943 0.4967 
9  0.4335 0.4681 0.4809 0.4875 0.4916 0.4944 0.4964 0.4979 

10  0.4555 0.4792 0.4877 0.4920 0.4946 0.4964 0.4977 0.4986 
11  0.4708 0.4866 0.4921 0.4949 0.4966 0.4977 0.4985 0.4991 
12  0.4810 0.4914 0.4949 0.4967 0.4978 0.4985 0.4991 0.4995 
13  0.4877 0.4945 0.4968 0.4979 0.4986 0.4991 0.4994 0.4997 
14  0.4921 0.4965 0.4979 0.4987 0.4991 0.4994 0.4996 0.4998 
15  0.4950 0.4978 0.4987 0.4992 0.4994 0.4996 0.4998 0.4999 
16  0.4968 0.4986 0.4992 0.4995 0.4996 0.4998 0.4998 0.4999 
17  0.4980 0.4991 0.4995 0.4997 0.4998 0.4998 0.4999 0.4999 
18  0.4987 0.4994 0.4997 0.4998 0.4999 0.4999 0.4999 0.5000 
19  0.4992 0.4996 0.4998 0.4999 0.4999 0.4999 0.5000 0.5000 
20  0.4995 0.4998 0.4999 0.4999 0.4999 0.5000 0.5000 0.5000 
21  0.4997 0.4999 0.4999 0.4999 0.5000 0.5000 0.5000 0.5000 
22  0.4998 0.4999 0.4999 0.5000 0.5000 0.5000 0.5000 0.5000 
23  0.4999 0.4999 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
24  0.4999 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
25  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
26  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
27  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
28  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
29  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
30  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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Panel D.  ROE = 50% 
         λ =0.60 
Time (t)  

0g = 5% 0g = 10% 0g = 15% 0g = 20% 0g = 25% 0g = 30% 0g = 35% 0g = 40% 
1  0.0605 0.1182 0.1734 0.2262 0.2767 0.3251 0.3715 0.4160 
2  0.0729 0.1387 0.1984 0.2529 0.3028 0.3486 0.3909 0.4300 
3  0.0872 0.1611 0.2245 0.2795 0.3277 0.3702 0.4081 0.4419 
4  0.1037 0.1854 0.2512 0.3055 0.3510 0.3897 0.4231 0.4520 
5  0.1225 0.2110 0.2779 0.3303 0.3724 0.4071 0.4360 0.4606 
6  0.1433 0.2374 0.3039 0.3534 0.3917 0.4222 0.4470 0.4677 
7  0.1662 0.2642 0.3288 0.3746 0.4088 0.4353 0.4564 0.4736 
8  0.1908 0.2906 0.3521 0.3937 0.4237 0.4464 0.4642 0.4785 
9  0.2166 0.3162 0.3734 0.4105 0.4365 0.4558 0.4707 0.4825 

10  0.2432 0.3403 0.3925 0.4252 0.4475 0.4637 0.4761 0.4858 
11  0.2699 0.3626 0.4095 0.4378 0.4568 0.4703 0.4805 0.4884 
12  0.2962 0.3829 0.4243 0.4486 0.4645 0.4758 0.4841 0.4906 
13  0.3215 0.4010 0.4371 0.4577 0.4709 0.4803 0.4871 0.4924 
14  0.3453 0.4170 0.4480 0.4653 0.4763 0.4839 0.4896 0.4939 
15  0.3672 0.4308 0.4571 0.4716 0.4807 0.4870 0.4915 0.4950 
16  0.3870 0.4426 0.4648 0.4768 0.4843 0.4894 0.4931 0.4960 
17  0.4047 0.4526 0.4712 0.4811 0.4872 0.4914 0.4945 0.4967 
18  0.4201 0.4201 0.4610 0.4765 0.4846 0.4897 0.4931 0.4955 
19  0.4335 0.4681 0.4809 0.4875 0.4916 0.4944 0.4964 0.4979 
20  0.4449 0.4739 0.4844 0.4899 0.4932 0.4955 0.4971 0.4983 
21  0.4546 0.4787 0.4874 0.4918 0.4945 0.4963 0.4976 0.4986 
22  0.4627 0.4827 0.4898 0.4934 0.4956 0.4970 0.4981 0.4989 
23  0.4694 0.4859 0.4917 0.4946 0.4964 0.4976 0.4985 0.4991 
24  0.4750 0.4886 0.4933 0.4957 0.4971 0.4981 0.4988 0.4993 
25  0.4796 0.4907 0.4946 0.4965 0.4977 0.4984 0.4990 0.4994 
26  0.4834 0.4925 0.4956 0.4972 0.4981 0.4987 0.4992 0.4995 
27  0.4866 0.4939 0.4964 0.4977 0.4985 0.4990 0.4993 0.4996 
28  0.4891 0.4951 0.4971 0.4981 0.4988 0.4992 0.4995 0.4997 
29  0.4912 0.960 0.4977 0.4985 0.4990 0.4993 0.4996 0.4998 
30  0.4928 0.4968 0.4981 0.4988 0.4992 0.4995 0.4997 0.4998 

          

 



 40

Figure 1. Sensitivity Analysis of the Optimal Growth Rate 

The figures show the sensitivity analysis that how the time horizon ( )t , the degree of market perfection ( )λ , 

the rate of return on equity ( )1r L− , and the initial growth rate ( )og  affect the optimal growth rate.  Figure 
1.a presents the mean-reverting process assuming that the rate of return on equity is 40% and the degree of 
market perfection is 0.95. Each line shows the optimal growth rates over 30 years with different initial growth 
rates.  Figure 1.b presents the mean-reverting process assuming that the rate of return on equity is 40% and the 
degree of market perfection is 0.60.  Figure 1.c presents the mean-reverting process of the optimal growth rate 
assuming that the rate of return on equity is 50 % and the degree of market perfection is 0.95.  Figure 1.d 
presents the mean-reverting process of the optimal growth rate assuming that the rate of return on equity is 50% 
and the degree of market perfection is 0.60. 
 
Figure 1.a  40%;   0.95ROE λ= =  Figure 1.b  40%;   0.60ROE λ= =  
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Figure 1.c  50%;   0.95ROE λ= =  Figure 1.d  50%;   0.60ROE λ= =  
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Figure 2. Optimal Growth Rate with respect to the Rate of Return on Equity and the Degree of Market 

Perfection 

The figure shows the optimal growth rates using different rates of return on equity and degrees of market 
perfection when the initial growth rate is 5% and the time is 3.  The rates of return on equity range from 5% to 
50%.  The degrees of market perfection range from 0.05 to 1. 
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