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Abstract

We show that, when allowing for general distributions of dividend growth in
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1 Introduction

According to textbook financial theory (e.g., Brealey and Myers, 2003), exposure to id-

iosyncratic (asset-specific, unique) risk should not be rewarded on the market. This is

because rational investors can eliminate idiosyncratic risk from their portfolios through

diversification. The risk that cannot be diversified away is termed systematic risk. In

order for risk-averse investors to hold a positive supply of stocks, exposure to systematic

risk would have to be rewarded.

Although this story seems convincing, recent empirical research has presented evidence

that idiosyncratic risk does affect risk premia, but it might not be in the direction that

one would first expect. Counter intuitively, Ang, Hodrick, Xing, and Zhang (2006, 2009)

find a negative relation between lagged idiosyncratic volatility and returns. They write

that their results represent “a substantive puzzle” (Ang, Hodrick, Xing, and Zhang, 2006,

p. 262). However, Fu (2009) argues that “The lagged idiosyncratic volatility might not

be a good measure of expected idiosyncratic volatility” (Fu, 2009, p. 25). Instead using

EGARCH to capture the time-varying features of idiosyncratic risk, he finds a positive

relation between conditional idiosyncratic volatilities and returns.

This paper provides a theoretical link between idiosyncratic volatilities and expected

returns. Employing an exchange-only Lucas (1978) economy in which we allow for general

distributions of dividend growth rates, we find that it will appear as though idiosyncratic

risk is priced in equilibrium. That is, the risk premium of a particular stock will depend not

only on the covariance with aggregate consumption, but also on other quantities, including
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the idiosyncratic volatility of the stock and the variance of aggregate consumption. This

stands in contrast with the classical result in consumption-based models that an asset’s

risk premium is determined only by agents’ risk aversion and the covariance with aggregate

consumption (e.g., Breeden, 1979).

From a technical point of view, our paper is related to Martin (2009, 2010), who

also expresses equilibrium quantities in terms of cumulant generating functions. Martin

(2010) considers a Lucas economy with a single risky asset (tree), whereas Martin (2009)

considers the case of multiple risky assets. Lillestøl (1998) explores the possibility of using

the multivariate NIG distribution within the areas of portfolio choice and risk analysis, and

he also briefly considers equilibrium conditions assuming constant absolute risk aversion

(CARA) utility. However, none of these works specifically addresses the relation between

risk premia and idiosyncratic volatilities.

The remainder of the paper is organized as follows. Section 2 presents our model. In

Section 3, we present our theoretical results and, finally, Section 4 concludes the paper.

2 Model

We consider an exchange-only Lucas (1978) economy in which there are n risky assets

and one risk-free asset. The future dividends from assets 1 through (n− 1) are given by

Di = D0ie
gi , i = 1, 2, . . . , (n− 1) (1)

and the future aggregate dividend is DA = D0Ae
gA . Here, g1, g2, . . . , gn−1 and gA are

dividend growth rates, and the vector of growth rates, (g1, g2, . . . , gn−1, gA), follows a
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joint probability distribution. The dividend/cash-flow from the nth asset is the difference

between the aggregate dividend and the sum of the first (n − 1) dividends, i.e., Dn =

DA −
∑n−1

i=1 Di.

There are N agents, having constant relative risk aversion: Their utility of consump-

tion is given by

u(C) =
C1−γ − 1

1− γ
, (2)

where γ > 1. They maximize their expected utility of current and future consumption:

They seek to maximize

u(Cj
0) + βE

[
u
(
C̃j
)]
, j = 1, 2, . . . , N, (3)

where Cj
0 denotes agent j’s current consumption, β is a time-preference parameter and

C̃j denotes his final consumption. All agents share the same beliefs and have access to

the same information. Each of the N agents is endowed with 1/N shares of each risky

asset, and this constitutes each agent’s sole endowment.

3 Results

Since agents are homogeneous with respect to preferences, beliefs and endowments, it

follows from Rubinstein’s Aggregation Theorem (Rubinstein, 1974, p. 232) that we can

solve for equilibrium prices by considering a representative consumer with an endowment

equal to the average aggregate endowment,

Si = E

[
βu′ (DA/N)

u′ (D0A/N)
Di

]
, i = 1, 2, . . . , (n− 1) (4)
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and

B = E

[
βu′ (DA/N)

u′ (D0A/N)

]
, (5)

where Si is the price of stock i and B is the price of the bond.

In particular, under the assumed CRRA preferences, the number of agents (N) will

cancel out, and we can express the asset prices as

Si = βD0iE[egi−γgA ] = βD0iM[gi−γgA](1), i = 1, 2, . . . , (n− 1) (6)

and

B = βE[e−γgA ] = βM−γgA
(1), (7)

where MX denotes the moment-generating function for the random variable X.

Thus, the expected gross return on stock i is given by

E[(1 +Ri)] = E

[
Di

Si

]
=

D0iE[egi ]

βD0iM[gi−γgA](1)
=

Mgi
(1)

βM[gi−γgA](1)
, (8)

and the risk-free rate is

1 +Rf =
1

B
=

1

βM−γgA
(1)

. (9)

The difference (in logs) between the two is given by

rpi ≡ ln(E[(1 +Ri)])− ln(1 +Rf ) = kgi
(1) + k−γgA

(1)− k[gi−γgA](1), (10)

where k is the cumulant-generating function, defined by kX(t) ≡ ln(MX(t)). We call rpi

the risk premium of asset i.

If the cumulant-generating function exists in an open interval containing 0, then it is

infinitely differentiable in this interval and thus, making a Taylor expansion around 0, we
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can write the cumulant-generating function of the random variable X as

kX(t) =
∞∑
m=1

κm,X
tm

m!
, (11)

where κm,X ≡ k
(m)
X (0) is referred to as the cumulant.

Since kX(t) ≡ lnMX(t), there is an obvious relation between cumulants and moments.

For example, the first four cumulants are

κ1,X ≡ k′X(0) = E[X], (12)

κ2,X ≡ k′′X(0) = Var[X], (13)

κ3,X ≡ k
(3)
X (0) = Skew[X], (14)

κ4,X ≡ k
(4)
X (0) = Kurt[X]− 3 Var[X]2, (15)

where Skew[X] ≡ E[(X − E[X])3] is the third central moment (which we call skewness)

and Kurt[X] ≡ E[(X − E[X])4] is the fourth central moment (which we call kurtosis).

It is also possible to define cumulant-generating functions and cumulants for multi-

variate random variables. In the bivariate case, one can define a cumulant-generating

function k(X,Y )(t1, t2) ≡ lnM(X,Y )(t1, t2) with joint cumulants

κ(m,n),(X,Y ) ≡
∂m∂nk(X,Y )

∂tm1 ∂t
n
2

(0, 0). (16)

Further, it can be shown that, if Z ≡ a1X + a2Y , where a1 and a2 are constants, then

κm,Z =
m∑
j=0

(
m

j

)
am−j1 aj2κ(m−j,j),(X,Y ) (17)

(McCullagh, 1987).
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Hence, the risk premium of asset i can be written as

rpi = γ Cov(gi, gA) +
∞∑
m=3

1

m!

(
κm,gi

+ γmκm,gA
− κm,(gi−γgA)

)
= γ Cov(gi, gA)

+
∞∑
m=3

1

m!

(
(γm + (−γ)m)κm,gA

+
m−1∑
j=1

(
m

j

)
(−γ)jκ((m−j),j),(gA,gi)

)
. (18)

If the vector (g1, g2, . . . , gn−1, gA) follows a joint normal distribution, then gi, gA, and

(gi − γgA) are normally distributed. It is well known that, for a normally distributed

random variable, the cumulants of order three and higher are zero. Thus, in the case when

(g1, g2, . . . , gn−1, gA) follows a joint normal distribution, we obtain the familiar expression

rpi = γ Cov(gi, gA), (19)

where Cov(gi, gA) is said to capture systematic risk. However, the normal distribution is

the only distribution with a finite number of nonzero cumulants (Marcinkiewicz, 1938).

Thus, unless higher-order terms cancel out in (18), the result in (19) does not hold in

general.1 Below, we discuss the case in which (g1, g2, . . . , gn−1, gA) follows a multivariate

1A well-known result is that CAPM holds when returns follow an elliptical distribution (Owen and

Rabinovitch, 1983; Ingersoll, 1987). Indeed, it follows from the analysis in Hamada and Valdez (2008)

that, if we let Di = D0i(1+ ḡi), i = 1, 2, . . . , n, where (ḡ1, ḡ2, . . . , ḡn) follows a joint elliptical distribution,

then CAPM would hold. However, in order to avoid negative consumption, we model the log of dividend

growth. Of course, the circumstance that a random variable is log-elliptically distributed does not imply

that it is elliptically distributed (e.g., the log-normal distribution does not belong to the elliptic class).

In particular, assuming that (g1, g2, . . . , gn−1, gA) follows a Laplace distribution (which is elliptical) and

using the results in (8) and (9), we get some additional terms compared to (19). Interestingly, we obtain a
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Normal Inverse Gaussian (NIG) distribution and we find that the relation in (19) does

not hold in this case.

For a more general heuristic discussion, we can focus on the first two additional terms

in the infinite series in (18):

rpi = γ Cov(gi, gA) +
1

2

(
γ2κ(1,2),(gA,gi) − γκ(2,1),(gA,gi)

)
+

1

12

(
γ4κ4,gA

− 2γκ(3,1),(gA,gi) + 3γ2κ(2,2),(gA,gi) − 2γ3κ(1,3),(gA,gi)

)
+ higher order terms. (20)

In the above expression, the second term can be written as2

second term =
1

2

(
γ2
(
Cov(g2

i , gA)− 2µgi
Cov(gi, gA)

)
(21)

− γ
(
Cov(gi, g

2
A)− 2µgA

Cov(gi, gA)
))
, (22)

while the third term can be written as

third term =
1

12

(
γ4
(
Kurt[gA]− 3 Var[gA]2

)
− 2γ

(
3
(
µ2
gA
− Var[gA]

)
Cov(gi, gA) + Cov(gi, g

3
A)− 3µgA

Cov(gi, g
2
A)
)

+ 3γ2
(
4µgi

µgA
Cov(gi, gA)+Cov(g2

i , g
2
A)− 2Cov(gi, gA)2 − 2µgA

Cov(g2
i , gA)− 2µgi

Cov(gi, g
2
A)
)

− 2γ3
(
3
(
µ2
gi
− Var[gi]

)
Cov(gi, gA) + Cov(g3

i , gA)− 3µgi
Cov(g2

i , gA)
))
. (23)

consumption CAPM result for continuously compounded returns assuming log-normal growth rates (19)

even though the log-normal distribution does not belong to the elliptic class. This result is in line with

CAPM results in continuous time (e.g., Breeden, 1979).

2Here, and also later, when we reformulate the third term, we use the CumulantToCentral and Cen-

tralToRaw functions in the Mathematica add-on mathStatica.
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The second term depends on the expected (log) dividend growth rate of the individual

stock and the expected (log) growth rate of the aggregate dividend, while the third term

depends on the variances of the (log) aggregate and individual dividend growth rates.

Thus, looking at the third term and using the common interpretations, it appears as

though idiosyncratic risk is priced. Intuitively, investors with preferences for, for ex-

ample, positive skewness would be willing to sacrifice some mean-variance efficiency for

exposure to assets exhibiting positive skewness. Equation (23) suggests that preferences

for higher-order moments can result in the risk premium being sensitive to idiosyncratic

volatility. In addition, this equation tells us that the direction of the effect of idiosyncratic

volatility on the third term in the expression for the risk premium of stock i depends on

the covariance between its dividend growth rate and the growth rate of the aggregate

endowment. Provided that the stock pays off well in states with low aggregate consump-

tion, the representative agent is prepared to accept a negative risk premium, and the more

volatile the stock, the lower the risk premium he is prepared to accept.

Example: Multivariate NIG distribution

In the case when (g1, g2, . . . , gn−1, gA) is distributed according to a multivariate NIG dis-

tribution, it follows from, for example, Lillestøl’s (1998, p. 8) expression for the moment-

generating function that the risk premium in (10) is exactly equal to

rpi = δ
(√

α2 − h′Φh +
√
α2 − (h + oiA)′Φ(h + oiA)

−
√
α2 − (h + oA)′Φ(h + oA)−

√
α2 − (h + oi)

′Φ(h + oi)
)
, (24)
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where δ is a scale parameter, Φ is an n×n matrix related to covariance, α is a parameter

controlling tail thickness, and h is an n × 1 vector controlling the asymmetry of the

distribution. Further, oiA is an n×1 vector with 1 in its ith entry and −γ in its nth entry

and zeros in all other entries, oA is an n× 1 vector with −γ as its nth entry and zeros in

all other entries, and oi is an n × 1 vector with 1 as its ith entry and zeros in all other

entries.

Now, in order to gain some intuition, consider the symmetric case in which h = 0. In

this case,

rpi = δ
(
α +

√
α2 − φii + γ(φiA + φAi)− γ2φAA −

√
α2 − γ2φAA −

√
α2 − φii

)
. (25)

Given that h = 0, the variance–covariance matrix is Σ = δ
α

Φ, so we can rewrite the above

equation as

rpi = δ

(
α +

√
α2 − α

δ
(σ2

i + γ2σ2
A − 2γσiA)−

√
α2 − α

δ
γ2σ2

A −
√
α2 − α

δ
σ2
i

)
, (26)

where σ2
i = Var[gi], σ

2
A = Var[gA] and σiA = Cov(gi, gA). That is, the risk premium of an

arbitrary asset is affected not only by its systematic risk (as measured by σiA), but also

by its idiosyncratic volatility (σi) and the volatility of aggregate consumption (σA).

4 Conclusions

In this paper, we demonstrate that, allowing for general distributions of dividend growth

rates in a Lucas economy with multiple trees, idiosyncratic volatility will generically be
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priced. Thus, we provide a theoretical link between expected returns and idiosyncratic

volatilities.

It would be interesting to estimate our model to see how large an effect it is able to

generate. In order to estimate the model, one could assume some joint distribution for

growth rates (e.g., multivariate NIG), and then use some suitable estimation procedure.
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