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Abstract 

In this paper, a network based dynamic conditional correlation model is proposed. 
A market network can be easily constructed by digitizing pair wise correlations and 
the main idea is to introduce the transitivity of the market network. If two stocks are 
highly correlated to a large number of stocks, they are supposed to be highly 
correlated. The assertion is examined with samples from S&P 500 in the period from 
January 1996 to August 2009. Then we propose a network correlation model. 

Under this context, the transitivity for the whole network can be also used as a 
collective correlation index for the stock market. We found that the index is 
co-integrated with the CBOE VIX. This implies its usage for risk management. Then 
we conduct a simulation study to reproduce the characteristics of the observed 
collective phenomenon using the network based dynamic correlation model. These 
results illustrate the role of clustering effect in financial crisis and affirm the 
observation that extreme financial risk is endogenous. 
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1. Introduction 
This paper proposes a network based approach to explore the correlation structure of 
the stock markets. The idea is that indirect information for pairs of stocks (their 
respective correlations to other stocks) may be helpful for evaluating their correlations. 
This enhances the class of correlation models and offers an alternative way to 
understand nonlinear phenomenon of the financial markets. 

Correlations of asset prices have been known to be time-varying for a long time. The 
Dynamic Conditional Correlation (DCC) model proposed by Engle (2002) and its 
variants may be the most well known and commonly used in academia and industries 
for forecasting and filtering correlations. The estimates for correlations in this class of 
models are based on combinations of certain proxy quantities such as sample 
covariance and cross products of innovations. No indirect information enters the 
model explicitly. 

For correlation studies, there are stylized facts less commonly recognized than 
volatility. In the past years, many articles have tried to address the issue of the 
inter-market correlation increasing during the bears market, for example Campbell et 
al. (2002). However, recent research by Campbell et al. (2007) attributes the 
phenomenon to be caused by fat tails.  Becker and Schmidt (2009) investigated pairs 
of stocks and showed that correlations are either constant or increasing in bull markets. 
It should be noted that the methods in these articles are difficult to be generalized to a 
large number of assets. 

On the other hand, a more interesting question for the stock market could be “is the 
market highly integrated prior to the crash or does the market crash cause the stocks 
to be highly integrated?” Some researchers had suggested that large market crashes 
could be explained by the behavior of large participants, for example Gabaix et al. 
(2003) and Khandani and Lo(2007). That is, position changes of large participants 
may trigger a large market crash if all stocks are bound together. Under this context, 
tight integration of the market should be observed prior to the crash. 

The key to addressing these issues is to find a measure for the degree of integration 
among a large number of stocks. Intuitively, analyzing the correlation matrix will help 
in gathering certain information. However, as pointed out by Laloux et al. (1999), the 
correlation matrices calculated with asset price returns are mainly composed of noises. 
Thus dimension reduction is essential in dealing with the correlations. Araújo and 
Louçã (2007) proposed a procedure to denoise, determine the number of effective 
dimensions, and then compute the eigenvalues in the projected space as an index for 
market integration. They found that unusually high levels of the market structure 
index generally corresponded to major market crashes. That is, the market can be 
highly integrated prior to its major crashes. 

The eigenvalue approach over the (denoised) correlation matrix provides a 
macroscopic view of the stock market. It indexes simultaneously the extent and 
amplitude of correlations for a large amount of stocks. However, it gains less insights 
of microscopic phenomenon - how stocks interact with each other as they get closer to 
a market crash. 

An alternative approach is to digitize the correlations. By treating each stock as a 
vertex, an edge is established when the two connecting stocks are significantly 
correlated. As clustering effects generally exist in the financial markets, for example 
Bonanno et al. (2004) and Coelho et al. (2007), the network approach provides an 
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easy and efficient way to explore the correlation structure of the market. 
Emmert-Streib and Dehmer (2010) then proposed to use graph edit distance to 
quantify structural differences between two networks. They also found that abrupt 
changes in the measure correspond to market crashes. 

In this paper, we investigate the network dynamics under overlapping rolling 
windows for a sample from the S&P 500 index constituents between 1996 and 2009. 
As in the emerging studies of social network, the transitivity of the network plays an 
important role in modeling correlations. A positive relation is found between the 
number of common neighbors and future correlation on pairs of stocks. In addition, a 
market-wide correlation measure can be built on this concept. It is also found that this 
index is co-integrated with the CBOE VIX. This implies correlation and volatility 
share the same driving forces. 

Similar to modeling magnetism with the Ising model, a multivariate time series model 
which incorporates the transitivity of the network may help explain the endogenously 
emerged crisis. Simulation studies show the model can reproduce the abrupt changes 
of the collective correlation index. This implies that the usefulness of this type of 
model in risk management. 

The rest of the study is organized as follows. Section 2 investigates the network 
dynamics and proposes a multivariate time series model. Market-wide correlations are 
discussed in Section 3. Section 4 shows simulation results and Section 5 discusses 
conclusions and future extensions. 

2. Market network and correlation modeling 
In this study, we use daily returns of a sample from S&P 500 components. Stock 
prices are collected from Yahoo! Finance. These data consist of 3441 daily prices of 
100 companies from January 2, 1996 to August 31, 2009. The 100 samples are 
randomly drawn from 389 S&P 500 components that have at least 3400 trading days 
during the period. All returns are adjusted to dividends and splits. Missing values of 
returns are filled with 0. 

2.1 Modeling correlations 
Since the invention of multivariate GARCH models, financial econometricians have 
proposed a lot of models for correlations. The BEKK model (Engle and Kroner, 1995) 
focuses on the modeling of covariance but also implies dynamic conditional 
correlations. The earliest dynamic correlation model is the Constant Conditional 
Correlation model proposed by Bollerslev (1990). The covariance matrix is assumed 
as 

tt HRH , 

where R is the correlation matrix and Ht is a diagonal variances matrix. 

Engle (2002) and Tse and Tsui (2002) proposed similar dynamic correlation models. 
The DCC model proposed by Engle (2002) can be formulated as below: 

  1
')11( −++−−′Ψ= tttt QBABAQ  εε , 

  2/12/1 )()( −−= tttt QdiagQQdiagR , 

where Rt is the dynamic correlation matrix, εt is the standardized innovation, diag(X) 
represents the matrix composed of the diagonal elements of X and ◦ denotes the 



 

 3 

Hadamard product. 

Cappielo et al. (2006) extended the DCC model by introducing asymmetry in the 
dynamics and expressed their model in a quadratic form: 

  ( ) GGBQBAAVGGSBBSAASQ tttttt
'

1
' ξξεε ′+′+′+′−′−′−= − , 

where ),0min( tt εξ = , S is the sample covariance matrix of εt, and V is the sample 
variance of ξt. 
McAleer et al. (2008) proposed a generalized autoregressive conditional correlation 
(GARCC) model which incorporates the prior models. The structural properties of the 
GARCC model, the analytical forms of the regularity conditions and the asymptotic 
results are established in their paper. 

Another category of correlation models is the smooth transition models. Berben and 
Jansen (2005) investigated the smooth transition of the co-movement in international 
stock markets and considered the following form for the correlation: 

  ( )( ) ( )csGcsG ttt ,;,;1 10 γργρρ +−= , 

  ( )
))(exp(1

1,;
cs

csG
t

t −−+
=

γ
γ , 

where ρ0 and ρ1 correspond to two extreme states and st is the transition variable, 
endogenous or exogenous. The multivariate version can be found in Silvennoinen and 
Teräsvirta (2009). 

The building blocks used in the DCC model and its variations are generally restricted 
in sample correlation matrix, cross products of standardized innovations and their 
variations. The introduction of the transition variable may enable the model to 
incorporate more useful information, endogenous or exogenous. Here we focus on the 
information from the correlations themselves. 

However, it should be noted that the instability of estimates for correlation 
coefficients can be higher than expected when the sample size is not sufficiently large. 
Figure 1 shows the confidence intervals for different values of estimates with 
correlated normally distributed samples. It is easily seen that the uncertainty changes 
with respect to the value of the correlation coefficient. Furthermore, the correlation 
coefficient can be judged to be significantly different from 0 only when the estimate 
deviates quite far from 0. This implies that the correlation coefficients may not be 
additive. 

  [Insert Figure 1 Here] 

Therefore, the estimate of the correlation matrix can be much more unreliable because 
of the many entities. Specifically, as argued in Laloux et al. (1999) from the viewpoint 
of random matrix theory, the correlation matrices calculated with asset price returns 
are mainly composed of noises. Thus, while utilizing the information from a 
correlation matrix, (nonlinear) dimension reduction is essential and necessary. 

There are some possible approaches to deal with these difficulties. Principal 
component or its nonlinear variations provide the most intuitive approach. By treating 
each time series for one single stock as a point in a high dimension, Araújo and Louçã 
(2007) proposed to project the points into a lower dimension space through some 
nonlinear algorithm. The eigenvalues for the points in the lower dimension space can 
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be used as a measure for the integration of the market. Certainly, this idea can be 
incorporated into the smooth transition model. 

On the other hand, Emmert-Streib and Dehmer (2010) proposed a network based 
approach to address correlations and detect upcoming financial crisis. They built three 
networks monthly by testing null hypotheses of the correlation coefficient: 

(A) H0: ρ=0 vs H1: ρ≠0; 

(B) H0: ρ=0 vs H1: ρ<0; 

(C) H0: ρ=0 vs H1: ρ>0. 
For two networks (graphs) G and G', the graph edit distance is the minimum number 
of edge-additions and edge-deletions needed to transform G into G'. Denote the 
reference graph r

tG  as moving average of the graphs up to t, 

  ∑
=

=
t

s
s

r
t G

t
G

1

1 . 

The two authors calculated the graph edit distance between Gt and r
tG , and found that 

the peaks of the time series coincided with the recognized stock market crashes. 

2.2 Correlations and network topology 
Before proceeding to a correlation model, this section presents some observations 
with the S&P 500 sample. First, daily logarithmic returns for all stocks are calculated. 
As in Riskmetrics, the covariance matrix up to day t is computed by the exponentially 
weighted moving average method with the decay factor λ=0.94, 
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' λλ .        (1) 

And the correlation matrix is obtained as 

  ( ) ( ) 2/12/1 (( −−= tttt SdiagSSdiagR .        (2) 

Figure 2 shows the distribution of correlation coefficients calculated up to the dates 
January 3 2005, July 15 2007 and October 1, 2008. Looking back from 2011, the first 
date can be simply viewed as an ordinary day, the second corresponds to the summit 
of the 2004~2008 cycle, while on the third date the market was in turbulence after 
Lehman Brothers failed. 

  [Insert Figure 2 Here] 

Even though these correlation coefficients are dependent, their distribution still 
reveals some useful information. The density function is smoothed with the kernel 
method. It is easily seen that the second distribution (on July 15 2007) is notably 
skewed to the left compared to the first (on January 2 2005), but their tails do not 
differ significantly. And the third distribution (on October 1 2008) is shifted in whole 
to the right compared to the others. 

These observations imply that at least two regimes exist for the correlation structure. 
One corresponds to the bear market in which most assets are highly correlated. During 
“normal” days when the market “seems ” to randomly walks up and down, some 
lightly or moderately correlated pairs may be enhanced while some specific pairs 
remain at their originally high level. 



 

 5 

With this observation and considerations for the instability of estimating correlations, 
digitization of correlations suggested in Emmert-Streib and Dehmer (2000) would be 
a reasonable approach if the interest is simply to model the correlation prior to the 
crashes. Under this context, analysis of a large amount of asset could be treated with 
the tools from network theory that is used in many areas in recent years. 

A simple rule of thumb that has been widely applied in many e-businesses, for 
example Facebook and amazon.com, could be like this: for two subjects 
simultaneously related with someone else, they will have higher probability to be 
related to each other. An analog for the stock market network would be that two 
stocks highly correlated to one stock tend to be highly correlated. Such arguments, 
though intuitively reasonable but frequently ignored, can be useful for the modeling 
of correlations. 

To examine this idea, a network is built based on digitizing correlations with a preset 
threshold ρ0. This is also equivalent to testing the hypothesis H0: ρij,t>0. A stock k is 
said to be the common neighbor of stock i and j at time t if min(ρik,t, ρjk,t)>ρ0. 

For the S&P 500 sample, the correlation matrix is estimated day by day with the 
EWMA approach (1) and (2), and then the correlation matrix is converted to a binary 
matrix element by element with a threshold value ρ0=0.3. In this way, the market 
network on all stocks is established and the number of common neighbors for each 
pairs of stocks can be easily computed. 

Figure 3 displays the scatter plots for the correlations calculated with returns in next 
coming 15 and 60 trading days and the number of common neighbors so that the data 
used for correlations and the number of common neighbors do not overlap. A positive 
relation between the two variables seems to exist. For further investigations, we 
perform ordinary linear regressions for every 5 trading days. The time series of t 
statistics for testing the slope is shown in Figure 4. The result suggests the short term 
impact for correlation incorporating the number of common neighbors is just 
flickering around the significance level. But it is significant for medium term 
forecasts of correlations. This also implies that the nonlinear term does not dominate 
the short term dynamics of correlations. 

  [Insert Figure 3 Here] 

  [Insert Figure 4 Here] 

In addition, the number of common neighbors also effectively addresses the clustering 
effect in the stock market mentioned in Bonanno et al. (2004) and Coelho et al. (2007). 
To some extent, clustering can be seen as an externally top-down process that 
searches for the best segmentation of the stock market. However, it is generally hard 
and unrealistic to divide the market into non-overlapped blocks since the relationships 
among all stocks are very complex. We can ask the question inversely: what kind of 
cluster would a pair of stocks fit in. The enumeration on common neighbors actually 
provides the first order approximation to the concept. 

2.3 A network based correlation model 
Typical components in the correlation models consist of the time varying correlation 
matrix, a long term target matrix, and the cross products of unit innovations. 
Generally the long term target assumes stationarity on correlation but introduces a 
large amount of parameters to be estimated with the observations above. This term 
can be obtained through the number of the common neighbors. Then the model would 
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be more parsimonious and can be considered as composed of direct and indirect 
information for correlation of pairs of stocks. 

Thus a network based correlation model can be specified as 

  tttt RHr ε= ,            (3) 

  11
'

111111 )1( −−−− ++Ψ−−= ttttt QQ βεεαβα ,      (4) 

1,0 11 << βα , 10 11 <+< βα , 

  2/12/1 )()( −−= tttt QdiagQQdiagR ,        (5) 

  ( ) ( )( ) Ihdiagh ttttt +ΓΓ+′−ΓΓ+′=Ψ '
00

'
00 1111 βαβα , 0, 00 >βα , (6) 

  ( ) ( )1/1)( +−= xx eexh , 

where rt is the return vector, Ht is the diagonal matrix composed of variances for each 
stock, and Γt is the matrix for common neighbors. Note that Γt can be obtained from 
Qt by digitization or other sources. 

The following proposition addresses the requirements for the correlation matrix to be 
positive definite. 

Proposition 2.1. The correlation matrix Qt defined in (2)-(4) is positive definite. 

Proof. First note that '
00 11 ttΓΓ+′ βα  is positive definite as α0, β0>0 so 

( )'00 11 tth ΓΓ+′ βα  is also positive definite since h(x) is increasing and h(0)=0. 

As the diagonal elements of ( )'00 11 tth ΓΓ+′ βα  are always less than 1 so 
( )( )'

00 11 tthdiagI ΓΓ+′− βα  is also positive definite. As shown by Ding and Engle 
(2001), Qt is also positive definite as 0<α1, β1<1.■ 

With the assumption of normality for εt, the estimation of the network correlation 
model can be conducted by a two stage strategy. The log-likelihood can be 
decomposed into a volatility part and a correlation part: 

  );,();();,( zlrlYl cv φθθφθ += , 

  ( )∑
=

−++−=
T

t
ttttv rHrHNrl

1

1'log2log
2
1);( πθ , 

  ( )∑
=

− −+−=
T

t
ttttttc zzzRzRzl

1

'1'log
2
1);,( φθ ,      (7) 

where ( )1100 ,,, βαβαφ =  and θ is the parameter vector for the volatility part. 

Two issues about estimation should be noted. First, the dimension is large and the 
inversion of the correlation matrix can be difficult to obtain. Alternative approach 
such as composite marginal likelihood in Engle et al. (2008) can be an option. Second, 
recall that in Figure 4 the test statistics for β0 appear to be more significant with future 
correlations calculated from longer periods. This implies that estimation for β0 based 
on short term information, say likelihood estimation like (7), may lead to biases. 
Empirical results shall be shown in Section 4. 
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The slope β0 in (6) plays an important role for the growth of the network. Positive β0 
corresponds to the property that the clusters of stocks will tend to enhance themselves. 
Thus the evolution of the correlations under the model is self-organized. Combined 
with the observations in the subsequent section, this implies that the risk can be 
endogenous. 

Assuming a positive value of α0 implicitly leads to the tendency toward positive 
values for correlations of all pairs of stocks. Theoretically this can be an intuitive 
consequence of CAPM. As all stocks are related to the market portfolio, it is 
reasonable to expect that they tend to positively correlated to each other. Empirically, 
the distributions in Figure 2 actually indicate that correlations for most pairs of stocks 
are positive. 

Still the model can be also rearranged in the form: 

  ( ) ( )1
'

11111111 )1( −−−−−− −+−Ψ−−=− ttttttt QQQQ εεαβα . 

The form looks as if Ψt plays the role of the target of mean reversion for Qt. However, 
as Ψt changes over time, the process does not necessarily appear to be mean reverting. 
In fact, the stationarity or ergodicity of this type of models would require further 
explorations. A simple property can be shown in the proposition below. 

Proposition 2.2. When the number of assets approaches infinity, the condition 
11~ ′tQ  and 11 ′=Γt is an absorbing state. 

At a first glance, the proposition seems to pose some restrictions to the usage of the 
model. It implies that that the model may behave irrationally when all pairs of stocks 
are extremely highly correlated. However, such situation is generally seen in the 
severe bear market. At that moment, it is irrational to expect that the market is in any 
kind of equilibrium or stationarity. Thus, the question is just when to stop using this 
model. Thus a measure for the collective correlation of the market is necessary. 

3. Collective behavior of the market 
In this section a measure for the collective correlation of the whole market is proposed 
and investigated. This measure is then compared with the CBOE VIX, which is 
commonly recognized as a forward looking risk metric. As the two time series is 
found to be co-integrated, volatility and correlation may share the same driving forces. 
This measure is also used in judging the performance of the correlation models. 

3.1 Measuring the collective correlation 
As shown earlier, there are always some highly correlated pairs of stocks while others 
change over time. In addition to counting the number of highly correlated pairs or 
calculating the eigenvalues of the correlation matrix, a more elaborate method is to 
measure collective correlations of the market and investigate how many candidates of 
pairs are actually significantly correlated. 

However, which pair of stocks can be considered to be a candidate? Certainly, 
knowledge such as sectors may reveal some clues. But such static information cannot 
be sufficient for describing a dynamic system. The rule of thumb described in Section 
2.2 can be an alternative choice. After digitizing all the correlations, the whole market 
can be seen as a network and the transitivity of the network actually provides a good 
measure for this concept.  

The transitivity of a network is defined below. 
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 triplesconnected ofnumber 

 trianglesofnumber 3 ⋅
=allC  

Connected triples correspond to those pairs of stocks that are simultaneously highly 
correlated to another stock, and triangles mean triples of stocks highly correlated to 
one another. While calculated over the whole network, the denominator exactly 
represents how many pairs of stocks are supposed to be the candidates that are 
significantly correlated according to the time series data obtained. The numerator just 
reflects the realized number of candidates. 

It is noted that transitivity not only measures the level of correlation but also reflects 
the clustering effect. The transitivity would be higher than the proportion of connected 
edges if the clustering effect actually exists. In other words, a market is highly 
integrated when the clustering effect is strengthened. 

Some more descriptions about the properties of the random network are shown in the 
Appendix. 

3.2 Correlation and volatility 
The same procedure in Section 2.2 for the estimation of the covariance and correlation 
matrix can be used for the construction of the market network and the transitivity of 
the network can be easily calculated. Figure 5 shows the trend chart for the collective 
correlation constructed at different thresholds 0.25, 0.3 and 0.35. As the three time 
series do not differ significantly, setting the threshold at 0.3 seems to be a reasonable 
and robust choice. 

  [Insert Figure 5 Here] 

The most obvious feature of the collective correlation index may be the frequently 
seen jumps. This generally corresponds to correlations increasing during the market 
plunges. A coupling-decoupling process in a business cycle can be easily observed 
along the trend of the index. The average levels of the collective correlation index 
subsequent to the NASDAQ bubble seem to be higher than that prior to the bubble. 
This phenomenon probably indicates changes in trading behaviors. 

For further investigation of the property of the index, CBOE VIX serves as a good 
reference. This nonparametric volatility index has been viewed as one of the most 
important indicator which reflects the participants’ expected market condition in the 
future. 

Figure 6 shows the trend chart for the collective correlation index and the CBOE VIX. 
Generally speaking, the two time series have similar trends and, most importantly, 
they have very similar timing and patterns for jumps. Table 1 lists the testing result of 
the Johansen procedure on co-integration. The significant result for the co-integration 
test of the two series shows that they could be driven mainly by the same risk factors. 

  [Insert Figure 6 Here] 

  [Insert Table 1 Here] 

In addition, in the middle of 2007 both the two index had rose from their bottoms 
before the subprime crisis. This is essentially compliant with the results by Becker 
and Schimdt (2009). 

4. Application to risk management  
This section demonstrates the usage of the proposed network correlation model 
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through simulation studies. Since high collective correlation coincides with the 
possible forthcoming market turbulence and thus the restriction of the model, the most 
natural way is to simulate the collective correlation with the model until it exceeds 
some threshold. The distribution of the first passage time can be obtained through the 
simulations and used for planning of hedges and allocations. The simulations proceed 
as follows. 

First the time series of unit innovations for each stock is filtered by a simple GARCH 
process, in which parameters are estimated every year with returns in the past two 
years. Then the estimates for parameters in the correlation model are obtained by the 
composite marginal likelihood constructed by contiguous pairs. Table 2 lists the 
parameter estimates for the samples from several periods. 

[Insert Table 2 Here] 

The estimation results are basically compliant with the previous results, for example 
Engle et al. (2009), regarding high levels of auto-regression coefficients. For the very 
strong auto-regression effect, the short term forecast under the two types of models 
will not deviate from each other very significantly. However, as time elapses, the 
transitivity effect will start to dominate the correlation matrix and cause an abrupt rise. 
It is noted that, except the periods 2000-2001, the estimates for β0 are generally below 
0.01. This implies that a pairs of stocks tend to be significantly correlated if they have 
more than 20 common neighbors. 

For further investigations on the correlation models, we then conduct more simulation 
experiments. Figure 7 demonstrates several typical paths of the collective correlation 
generated by the DCC model and the network correlation model with different values 
of β0. The initial condition for the correlation matrix is set as on January 2, 2007. It is 
clear that the DCC model leads to a constant level for the collective correlation index. 
However, as β0 is small as 0.01, similar behaviors can be observed for the network 
correlation model. Only with larger values of β0, say 0.02 and 0.04, the collective 
correlation index reproduced with the network correlation model appear to have an 
upward trend or an abrupt increase. Note that the paths seem to be less stochastic 
while β0=0.04. This implies that only some appropriate values of β0 correspond to the 
observed collective correlations. 

  [Insert Figure 7 Here] 

This feature of the network correlation model can be applied in risk management. The 
intuition is that higher collective correlations generally correspond to higher 
volatilities and thus higher probabilities for future turbulence. Thus by evaluating the 
distribution of the first passage times over a prescribed threshold may help portfolio 
managers to arrive at their allocation and hedge strategies. 

Figure 8 shows the distributions of the first passage times over the threshold 0.7 for 
collective correlations with initial conditions set on January 2, 2007. The values of β0 
are set as 0.025, 0.03, 0.035, 0.04 and 0.045. The distribution corresponding to 
β0=0.03 (solid line) is to the left of other distributions, including the one with 
β0=0.025 (dashed). Again this means that the choice can be a little restrictive and a 
proper level may be roughly 0.03, which is in fact quite larger than estimated by 
maximum likelihood. However, all these first passage time distributions point to the 
assertion that the collective correlation index may rise over the threshold 0.7 after 
about 100 trading days on average.  
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  [Insert Figure 8 Here] 

5. Conclusions 
This study proposes to include indirect information for the modeling of the correlation 
of a pair of stocks. The idea about indirect information is implemented by digitizing 
the correlations and counting the number of common neighbors. With a sample from 
S&P 500, a positive relation between the number of common neighbors and future 
correlation is found. We propose a network correlation to extend the DCC model. 

The same idea is also used for the construction of a collective correlation index. The 
index is coherent with the CBOE VIX in terms of dynamics. This also suggests that a 
multivariate time series model, especially for a large number of stocks, can be used. 

As for the technical issues, it may not be necessary to digitize all the correlations but 
adding some kind of weights with respective to different values of correlation 
coefficients is essentially important in consideration of the instability of correlation 
estimates. Within the network setting, some possibilities are worth further exploring. 
For example, constructing the network by checking the existence of the tail 
dependence for a pair of stocks can be an alternative approach. 

The model in this study incorporates ideas from statistical mechanics so as to produce 
nonlinear and even critical phenomenon similar to phase transition. It also illustrates 
how extreme risks may evolve through interactions among a large number of assets. 
In other words, it would be a rational conjecture that certain extreme financial risks 
could be endogenous, although the true mechanism is still not well understood. 

The model and the concept proposed in this study should not be simply viewed as an 
alternative dynamic conditional correlation model. It aims to address the issue of 
understanding the collective dynamics of a large number of stocks. In this context, it 
is also an alternative approach to the systematic risk addressed in Brownlees and 
Engle (2010) and Acharya et al. (2010), which has become more and more important 
since the subprime crisis.
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Appendix. Random network 
A network or a graph G is composed of an ordered pair (V, E), where V is a set of 
vertices and E is a set of edges that join pairs of vertices. A graph can be either 
directed or undirected. In this paper, only undirected graphs are considered. 

In practical applications, each vertex represents a subject or a random variable and the 
edge reveal certain dependency relationships between each pair of vertices. The 
network approach thus provides an easy way to visualize the interrelation structure of 
a large-scale complex system. 

Two vertices are neighbors if they share a common edge. The degree of a vertex is the 
number of edges it has. The set of vertices that a vertex can reach through edges is the 
component it belongs to. A geodesic path for a pair of vertices is the shortest path 
between them. The diameter of a graph is its longest geodesic path. 

An interesting property for a network is transitivity or clustering. Consider a network 
and three vertices a, b and c. If a and b are connected and a and c are connected, then 
it is well expected that b and c are connected to each other. So a clustering coefficient 
can be 

  
 triplesconnected ofnumber 

 trianglesofnumber 3 ⋅
=allC , 

where the connected triple is the combination of three vertices and at least two edges 
among them. 

  [Insert Figure A1 Here] 

For a specific vertex k, the coefficient can be also defined as 

  
k

kCk on vertex  centerd  triplesconnected ofnumber 
 vertex  toconnected  trianglesofnumber 

= . 

A random network has edges that are randomly produced. The simplest random 
network is the Erdős–Rényi model, in which the presence of an edge is independent 
of the presence of any other edge with a constant probability p. Thus, the probability 
for any vertex to have a degree k is 
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where z=(N-1)p and the approximation relies on large N. 

Studies for random networks with arbitrary degree distributions can be found in 
Newman et al. (2001), and a short review for properties of graphs can found in 
Newman (2003). 

A famous example for a network in the real world is the small world model proposed 
by Watts and Strogatz (1998) and Watts (1999). The model can be built from a regular 
lattice by randomly rewiring a fraction of the edges. As shown by Watts and Strogatz 
through simulations, the rewired network has a low average distance between vertices 
and high transitivity. 
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Table 1. Co-integration test by the Johansen Procedure for the collective correlation 
index and the CBOE index. 

 Test 
statistic 

10% 5% 1% 

r<=1 9.53 6.50 8.18 11.65 

r=0 19.61 12.91 14.90 19.19 

 

 

Table 2. Parameter estimates of the network correlation model with data from several 
periods. Numbers in the brackets are asymptotic standard deviations. 

Data period α0 β0 α1 β1 

1999-2000 0.1792 

(0.0084) 

0.0063 

(1.4697) 

0.9798 

(0.0276) 

0.0072 

(0.0003) 

2000-2001 0.3186 

(0.0019) 

0.0346 

(0.8196) 

0.9730 

(0.0043) 

0.0126 

(0.0001) 

2001-2002 0.7355 

(0.0354) 

0.0029 

(0.0001) 

0.9854 

(0.0299) 

0.0109 

(0.0005) 

2002-2003 0.6126 

(0.0522) 

0.0070 

(0.0009) 

0.9855 

(0.0257) 

0.0099 

(0.0005) 

2003-2004 0.4796 

(0.0089) 

0.0044 

(0.0001) 

0.9801 

(0.0174) 

0.0094 

(0.0003) 

2004-2005 0.4892 

(0.0308) 

0.0049 

(0.0006) 

0.9851 

(0.0154) 

0.0060 

(0.0003) 

2005-2006 0.4341 

(0.0122) 

0.0061 

(0.0004) 

0.9789 

(0.0170) 

0.0069 

(0.0005) 

2006-2007 0.5369 

(0.0750) 

0.0041 

(0.0002) 

0.9855 

(0.0142) 

0.0066 

(0.0013) 
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Figure 1. Confidence interval for different sample correlation coefficients. The dash 
line and dotted line correspond to 90% and 95% of confidence levels respectively. 
The sample size is set as 25. 
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Figure 2. Distribution of correlation coefficients in different market conditions. The 
first date (January 3, 2005) can be viewed as an ordinary day, the second (July 16, 
2007) corresponds to the summit of the 2004~2008 cycle, while on the third date 
(October 1, 2008) the market was in extreme turbulence after Lehman Brothers failed. 
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Figure 3. Future correlations versus the number of common neighbors. Left column 
corresponds to correlations in next 15 days and right column to correlations in 60 days. 
The correlation coefficients are transformed to ),( ∞−∞

 
with 

( ))1()1(log)( xxxh −+= .
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Figure 4. Significance of the slope. The correlation coefficients are transformed to 
),( ∞−∞  with ( ))1()1(log)( xxxh −+= and then regressed with the number of the 

common neighbors every 5 days. 
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Figure 5. Collective correlation index at different threshold: 0.35 (dotted), 0.3 (solid) 
and 0.25 (dashed). 
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Figure 6. The trend chart for the collective correlations index (dashed), CBOE VIX 
(solid) and S&P 500 index (dotted) from January 1997 to August 2009. 
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Figure 7. Typical paths of the collective correlations simulated by the DCC model and 
the network correlation model with different values of β0. The initial condition is set 
as of January 2, 2007. The other parameters are estimated with the data in the 
preceding two years respectively. 
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Figure 8. Distribution of the first passage time with respective to different values of β0: 
0.25 (dash), 0.3 (solid), 0.35 (dotted), 0.4(dot-dashed) and 0.45 (long dashed). The 
initial condition is set as of January 2, 2007. 

 


