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A COMPARATIVE EVALUATION OF THE BOSE- EINSTEIN ENTROPY,

SPATIAL EQUILIBRIUM AND THE LINEAR PROGRAMMING TRANSPORTATION MODELS 

LITERATURE REVIEW

Laws on the motion of masses date back to the works of Galileo and Newton in the beginning of the seventeenth century. The latter have been 
subsequently refined by several first rank physicists (e.g., Maxwell and Einstein). On the other hand, shipments of commodities over economic space or spatial allocation models in general have not advanced much beyond either the classical linear programming formulations proposed by Hitchcock (1941), Kantorovich (1942) and Koopmans (1949), or its market-oriented versions (the spatial equilibrium models) emanating from the works by Enke (1951), Samuelson (1952), and Takayama and Judge (1964, 1971). The objective of the Hitchcock- Kantorovich - Koopmans formulation is to minimize total energy (transportation and other production costs) in trans locating masses (interregional commodity shipments). Similarly, the objective of the spatial equilibrium models (an analogue of Kirchhoff's law of electric circuits) is to maximize the net 
social payoff (Samuelson, 1952) while subject to the same constraints as that in its linear programming counterpart. 
There has been a large body of literature that improves or extends the original Takayama-Judge model, including: reformulation and a new algorithm by Liew and Shim (1978), Nagurney (1986); inclusion of income by Thore 
(1982); transhipment and location selection problem by Tobin and Friesz 
(1983, 1984); sensitivity analyses by Yang and Labys (1981, 1982), Chao and Friesz (1984), Daffermos and Nagurney (1984), and Tobin (1984, 1987); computational comparison by Meister, Chen and Heady (1978), and Nagurney  

(1987a); iterative methods by Pang and Chan (1982), Irwin and Yang (1982);a linear complementarity formulation by Takayama and Uri (1983); sensitivity analysis of complementarity problems by Tobin (1984) and Yang and Labys 
(1985); applications of the linear complementarity model by Kennedy (1974), Sohl (1984), Khatri-Chhetri, Hite and Nyankori (1988), Takayama and Hashimoto (1989), and Uri (1989); a solution condition by Smith (1984); the spatial equilibrium problem with flow dependent demand and supply by Smith and Friesz (1985); nonlinear complementarity models by Friesz, etc. (1983), and Irwin and Yang (1983); variational inequalities by Pang and Chan (1982), Daffermos (1983), Harker (1984), Tobin (1986) and Nagurney (1987b); a path dependent spatial equilibrium model by Harker (1986); and dispersed spatial equilibrium by Harker (1988). For the detailed description of the advances in the spatial equilibrium models, readers are referred to Labys and Yang (1991). 

However, both linear programming and spatial equilibrium models being built on the foundation of relatively low total energy levels, are known to 
exhibit certain regularities. For instance, there exist very limited numbers of positive commodity flows (Silberberg, 1971; Gass, 1985). As a result, an important phenomenon of cross-hauling is precluded from the models. In addi-

​tion, all optimum commodity flows must obey some symmetrical or reciprocity condition (Silberberg, 1971; Yang, 1989). Despite these limitations, appli​cations of the linear programming transportation and spatial equilibrium 

models have proliferated especially in agricultural and energy markets in 

which transportation costs constitute a significant portion of the market 
demand price. For instance, one of the earliest applications of the linear programming model was on the U.s. coal market (Henderson, 1958) and most applications of the spatial equilibrium models may be found in agricultural
and energy market (see Labys, 1989; and Thompson, 1989 for literature review 

of such applications).
Another branch of important spatial interaction models is based on 

Newton's gravity law. The problem of applying various gravity models to 

interregional commodity shipments lies in the choice of an appropriate 

functional form and consistency of the estimates (Hwa and Porell, 1979). 

While Newton's model may be appropriate for essentially a large-scale 

structure, it is not suitable for modeling a small-scale problem from a 

physical point of view. Perhaps, this is a reason that one of the successful 

applications of the gravity models may be found in the multi-commodity input- 

output formulation by Leontief and Strout (1963)
. Like that in physics, 

Newton's model fails in the world of (i) extremely small particles 

(insignificant commodity flows) in which the quantum mechanics prevails and 

(ii) fast and highly massive objects (extremely strong markets) dealt with by relativity. It is interesting to note that the large-scale Leontief-Strout 

was published one year before Takayama and Judge reformulated the Enke- 

Samuelson problem into a standard quadratic programming or spatial equilibrium 

model. The entropy modeling had not received enough attention until 1970 when 

Wilson derived the gravity model from the entropy-maximizing paradigm. By the 

middle of the 1970's Evans (1973), and Wilson and Senior (1974) proved the 

relationship between the linear programming and the entropy-maximizing 

models
. As a matter of fact, Hitchcock-Kantorovich-Koopmans linear 

programming transportation problem was shown to be a special case of the 

entropy model. The detailed descriptions on these models may be found in 

Batten (1983), and Batten and Boyce (1986). However, the implementation of 

such entropy models to the interregional commodity shipment problem has been 

limited despite the recent result by Yang (1990). 

The purpose of this paper is to implement the Bose-Einstein entropy model 

to the Appalachian steam coal market in which coal flows are viewed identical. 

It is interesting to explore that if the coal shipments of the Appalachian 

market are more closely related to the law of electric circuits or particles 

of quantum mechanics. Such a comparison, to the best of our knowledge, has 

never been implemented in the context of interregional spatial commodity 

modeling. In the next section, we formulate the model. We then compute the 

coal flows from the Bose-Einstein entropy model, and compare them with that of the Hitchcock-Kantorovich-Koopmans transportation problem, and the Enke- 

Samuelson-Takayama-Judge spatial equilibrium model. 

THE BOSE-EINSTEIN ENTROPY FORMULATION OF THE INTERREGIONAL COMMODITY MODELING

According to the second law of thermodynamics, in a universe ruled by 

entropy, there is a tendency at all times to move inexorably toward greater 

and greater disorder (see Georgescu-Roegen, 1971 and Nikjamp and Paelinck, 

1974).
 Batten (1983) showed that movements of distinguishable particles 

(interregional commodity flows) can be used to formulate the Maxwell-Boltzmann 

entropy model while movements of independent and identical particles may be 
employed to derive the Bose-Einstein entropy model. The commodity units used 

in shipments may be considered "homogeneous" especially in the classical 

competitive market. Within this context, the Bose-Einstein entropy 

formulation would be more appropriate for agricultural or energy commodity 

modelings. The objective of the Bose-Einstein model is to maximize the number 

of different arrangements (entropy) in assigning Xij (number of units of 

commodity shipments from supply region i to demand region j) to hj numbers of depots in demand region j where i€I, j€J, ij€ IXJ and I, J are finite sets of positive integers; and IXJ is a cartesian product of I and J. The problem is equivalent to assigning x number of identical pigeons to y number of holes (or the well-known pigeonhole theorem). The answer is (x+y-l) Cy-1 (see Batten, 

1983; Lewis and Papadimitriou, 1981). Hence, the number of such arrangements 

in assigning Xij units of hj numbers of consumption 

depots in region j is (Xij + hj -1) Chj –l
or 
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Using Stirling's approximation
, equation [1] can be shown as 
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Taking product over i and j, we have 
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Since the logarithmic transformation of [3] preserves the properties of 

the maximization problem and for mathematical convenience, we take the natural 

logarithmic function of W to have
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The Bose- Einstein entropy model may then be formulated as



Maximize 

log W












[5]



Xij


Subject to 
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[9]
Where

Yj  = consumption level in region j






Xi = production level region i
tij = unit transportation cost from supply region i to








demand region j






C   = total transportation cost analogous to total energy








Level imposed in a closed system

Since the number of depots is fixed in each demand region and the constant drops out in the maximization process, equation [4] may be reduced to
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It is evident from equation [lO] that in the limiting case in which there 

exists only one depot in each consumption region, or hj = 1, the right hand 

side of equation [lO] is zero or W = 1. On the other hand, the larger the 

value of hj, the greater the number of different arrangements (potential 

interregional commodity flows). Equations [6], [7], [8], [9], and [10] 

constitute the Bose-Einstein Entropy-Maximizing Model that generates a 

most probable state of the interregional commodity flows given the constraints 

on demand, supply and total transportation cost. 

COMPARATIVE EVALUATIONS OF THE BOSE-EINSTEIN ENTROPY, LINEAR PROGRAMMING AND SPATIAL EQUILIBRIUM MODELS 

In order to facilitate the comparison among three models, seven demand and supply regions, as well as consumption depots in the Appalachian steam 

coal market, are reported in Table 1. Forty-nine unit transportation costs 

and other demand and supply estimates are shown in Tables 2 and 3, respec- 

tively. These data are obtained from Labys and Yang (1980). Since the linear 

programming model is the building block upon which other allocation models 

rest, we begin the descriptions based on the LP model. Given the available 

data, the optimum solution to the Hitchcock-Kantorovich-Koopmans model may
be derived from solving the standard linear programming transportation problem:
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Xij
subject to equations [6], [7], and [9]. 

Similarly, the objective of the spatial equilibrium model with a set of 

linear demand and supply functions is to maximize the social net payoff (or 

NSP). 

Maximize 
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[11]
	subject to equations 
	[6 ], 
	[7] , 
	and [9]. 

	where aj 
	= estimated intercept of the demand function in region j 

	bj 
	= estimated slope of the demand function in region j 

	ci
	i= estimated intercept of the supply function in region i

	di 
	= estimated slope of the supply function in region i 


Note that if the demand requirement equals optimum consumption level, and 

the capacity constraint equals production level for each region, the linear 

programming and spatial equilibrium model can be made identical. The optimum 

solutions of the Hitchcock-Kantorovich-Koopmanns linear programming, Enke- 

Samuelson-Takayama-Judge spatial equilibrium, and Bose-Einstein entropy maxi- 

mizing models are reported in Table 4. The spatial equilibrium solution is 

reported from Labys and Yang (1980). All three models employed identical 

transportation costs, and the linear programming and entropy models have 

identical restrictions on consumption and production levels. However, the 

optimum consumption and production levels are endogenous to the spatial 

equilibrium model, and hence, may well be different from actually observed
levels. For this reason, we restrict the analysis to interregional commodity flow since they are endogenous to all three models using identical 
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transportation data. The total transportation cost 
in the Bose-Einstein entropy model is set at the total observed transportation 

cost in such a way that the most probable set of interregional commodity flows 

may be derived for comparison purposes
. 

A perusal of Table 4 indicates that the Bose-Einstein entropy model 

generates 14 positive steam coal flows in the Appalachian market while the 

spatial equilibrium and Hitchcock-Kantorovich-Koopmans models produce 13 and 

12 positive steam coal flows. The Bose-Einstein entropy model correctly 

describes the existence of 13 out of 22 actually observed coal shipments in 

the market whereas the spatial equilibrium and linear programming models 

correctly predict 10 and 8 coal shipments, respectively. Therefore, the 

entropy model clearly out-performs the other two models in terms of the number 

of positive coal shipments. Further, of the ten actually observed major steam 

[image: image4.png]coal shipments (X;,, X,3, X,s5, Xi3o, X5, X9, Xes, Xee» X7, X76), the entropy and




spatial equilibrium models predict 8 major flows while the linear programming 

model predicts 7 flows. That is, the Bose-Einstein model predicts all major 

shipments but X23 (from Ohio to Indiana and Michigan) and X57 (from Virginia to South Atlantic); the spatial equilibrium model predicts all major coal 

shipments except X35 (from Northern West Virginia to Ohio Valley) and X66 (from 

East Kentucky and Tennessee to South Central); and the Hitchcock-Kantorovich-
Koopmans linear programming model correctly predicts all major shipments 

except X23, X35, and X66• As a consequence, the linear programming is 

relatively less satisfactory in predicting the existence of major coal 

shipments. 

In order to compare the magnitudes of interregional commodity flows under 

the three models with that actually observed, we employ the following 

performance index:
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Where 
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 is the predicted coal shipment from supply region i to demand region 

j and Xij is the observed value of the corresponding 
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. Of the 10 major 

coal shipments, the performance index for the Bose-Einstein entropy, Enke- 

Samuelson-Takayama-Judge spatial equilibrium, and Hitchcock-Kantorovich- 

Koopmans linear programming models are 38.97%, 34.34% and 58.34% respectively. 

In other words, these three models explain 61.03%, 65.66% and 41.66% of the 

volumes of ten major coal shipments. While the spatial equilibrium and 

entropy models are comparable in terms of explaining the volumes of major coal 

shipments, the performance of the linear programming transportation model is 

clearly less satisfactory in this respect. This comes as no surprise since in 

a market-oriented environment, the linear programming model in its simplest 

form cannot adequately explain the steam coal shipments by a fixed vector of 

unit transportation costs, demand requirements, and capacity constraints. 

However, with additional information included in the model such as sulfur 

content and pollution controls, the linear programming model may better 

explain the coal shipments in the market. 

Although the entropy and spatial equilibrium models are comparable in
terms of performances for explaining commodity shipments, they are genuinely 

different models. The performance of the spatial equilibrium model is 

contingent to a large extent on the statistical accuracy in estimating 

regional demand and supply functions for a given set of transportation costs. 

The random properties are generated by the estimated regional equations. On 

the other hand, the foundation of the Bose-Einstein model, much like that 

found in Brownian motion, rests on the randomness of particle movements fora 

given level of total energy in a closed system. The properties of randomness, 

unlike the spatial equilibrium model, are due to the assumption of the 

statistics mechanics
. The random nature of interregional commodity 

shipments in the Bose-Einstein entropy model gives rise to the most probable 

set of commodity flows as "optimum" solutions given the constraints on demand, 

supply and total observed transportation cost. The unavoidable property of 

randomness of interregional commodity shipments in the entropy model gives a 

more general theoretical foundation than the other two models which are 

basically built on the criterion of minimum total energy or maximum 

efficiency. Quantum mechanics is known to embody the electric circuit problem 

and other physical phenomena. However, the gravity model, quantum mechanics 

and relativity are not compatible (see Hawking, 1988). Consequently, the 

solution of the Bose-Einstein model does not need to obey reciprocity 

conditions and hence, it allows the phenomenon of cross-hauling. However, 

policy implications of the entropy model are not as readily available as the 

spatial equilibrium model. For instance, a pollution tax on coal produced in 

the Appalachian production region could be detected and traced out through the 
markets in terms of changes in delivered, mouth of mine prices, consumptions, productions, economic surpluses and all coal shipments in a non-degenerated model (Silberberg, 1970; Yang, 1983). The same type of tax imposed on the entropy model may be used to show that the entropy in a regulated system with a tax is less than that of the unregulated system (Yang, 1990). As a result, the policy implications of the entropy model is rather limited in the context of traditional economic analysis. 

CONCLUDING REMARKS 
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Advances in theoretical physics such as Newton's gravity, Kirchhoff's laws of electric circuits, and particle movements in quantum mechanics have contributed significantly to modeling interregional commodity shipments. The foundation of these spatial models is the Hitchcock-Kantorovich-Koopmans  linear programming transportation problem upon which other spatial allocation models are built. The linear programming model in its simplest form has some properties due to the efficiency criterion (e.g., minimizing total costs). Consequently, its solution must exhibit certain characteristics. First, there are only a limited number of positive commodity shipments allowed in the  solution set in order to minimize transportation and production related costs. Second, the phenomenon of cross-hauling is precluded from the linear  programming transportation model since more spatial diffusion (commodity  flows) would not be cost efficient. Third, the reciprocity condition,                                 is typically observed. Similarly, the Samuelson​Takayama-Judge spatial equilibrium model also shares these solution  properties. Nonetheless, the spatial equilibrium model may better explain the market due to the improvement made from statistically estimated demand and supply functions. On the other hand, the Bose-Einstein entropy model does not
possess these solution properties because it seeks the most probable interregional commodity shipments based on the assumption of maximizing the entropy. These two types of models are genuinely different, and hence a choice must be made in order to implement the models for a given market. 

With a given set of transportation costs, demand requirements and  capacity constraints of the Appalachian steam coal market, the solution of the Bose-Einstein entropy model indicates that it better explains the spatial diffusion (the number of commodity shipments) as compared to the other two  models. In predicting the volumes of major coal shipments, the spatial equilibrium model is comparable to that of the entropy model, but it out​  performs the linear programming model. Moreover, the policy implications may be easily modeled in the spatial equilibrium model. Conversely, such policy implications are limited in the entropy model. The observational evidence in our study suggest that the entropy or spatial equilibrium models may be  preferred to the linear programming transportation model for the Appalachian steam coal where transportation costs compose a significant portion of the delivered price. Finally, the performance of the linear programming model may be greatly enhanced with additional information included since it has the greatest computational advantage of the three models investigated
TABLE 1 

	
	Supply Region 
	Base Point 

	l. 
	Pennsylvania, Maryland 
	Pittsburgh 

	2. 
	Ohio 
	
	Cadiz 

	3. 
	Northern West Virginia 
	Morgantown 

	4. 
	Southern West Virginia 
	Beckley 

	5. 
	Virginia 
	
	Bristol 

	6. 
	East Kentucky, 
	Tennessee 
	Pikeville 

	7. 
	Alabama 
	
	Birmingham 


	Demand Region
	Consumption Depots

	1.Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont

	Boston, Hartford, Providence, Portland 



	2.New Jersey, New York, Pennsylvania, Washington, D.C., Maryland, Delaware

	New York, Newark, Philadelphia 



	3.Indiana, Michigan 

	Detroit, Indianapolis, Fort Wayne

	4.Illinois, Wisconsin, Minnesota

	Chicago, Milwalkee, Minneapolis

	5.West Virginia, Ohio, Kentucky

	Cincinnati, Cleveland, Columbus, Lexington, Charleston

	6.Tennessee, Alabama, Mississippi 

	Birmingham, Nashville, Jacksonville



	7.Virginia, North Carolina, South Carolina, Georgia, Florida

	Columbia, Raleigh, Charlotte, Miami


TABLE 2

UNIT TRANSPORATAION COST

(Cents per 
[image: image7.wmf]6

10

BTU)

	From

To
	1
	2
	3
	4
	5
	6
	7

	1
	19.1
	22.2
	20.2
	20.5
	21.2
	24.3
	26.8

	2
	14.5
	18.3
	13.5
	16.9
	17.6
	20.4
	23.3

	3
	13.2
	13.8
	11.8
	16.6
	20.3
	16.7
	19.8

	4
	18.8
	19.8
	19.6
	22.5
	21.8
	17.1
	18.1

	5
	15.1
	13.3
	13.7
	12.6
	17.2
	13.4
	15.7

	6
	21.1
	22.5
	21.8
	19.2
	14.1
	16.9
	7.0

	7
	21.0
	24.0
	20.9
	16.5
	14.7
	13.6
	14.3


Source: See Mutchler, etc. and Labys and Yang (1980).

TABLE 3

	ESTIMAES ON REGIONAL DEMAND AND SUPPLY

	Demand Intercepts = (69.8, 86.4,57.5,49.7,61.3,47.4,61.6)

	Demand Slopes = (-462.73, - 33.03,-20.5, -40.08, -12.71, -17.79, -22.13)

	Supply Intercepts = (27,26.3, 25, 30.4,23,27,28.2)

	Supply Slopes = (4.46,4.221,14.259,25.07,24.35,2.6028,59.62)

	Actual Production levels* = (1.2,0.93,0.75,0.05,0.24,1.73,0.32)

	Actual Consumption level =(0.03,1.29,0.66,0.03,1.72,0.52,0.97)


*Quantities are measured in 
[image: image8.wmf]15
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 BTU, see Labys and Yang (1980).
	
	
	
	
	TABLE 4 
	
	
	
	

	
	
	
	OPTIMUM SOLUTION (in 1015 BTU) OF THE APPALACHIAN STEAM COAL MARKET 
	
	

	
	From 
	PA 
	
	Northern 
	Southern 
	
	East KY 
	
	Total 

	To 
	
	MD 
	OH 
	WV 
	WV 
	VA 
	TN 
	AL 
	Demand 

	New England 
	(0.03) 
	
	0.03 
	
	[0.03] 
	
	
	0.03 

	
	
	
	
	(0.03) 
	
	«0.042) ) 
	
	
	

	Mid-Atlantic 
	«1.025» 
	
	«0.195» 
	
	
	
	
	

	
	
	1.03 
	
	0.21 
	0.02 
	0.03 
	
	
	1. 29 

	
	
	(0.895) 
	
	(0.155) 
	
	(0.239) 
	
	
	

	
	
	[1. 2] 
	
	[0.09] 
	
	
	
	
	

	IN-MI 
	
	«0.304» 
	«0.336» 
	
	
	
	
	

	
	
	0.07 
	0.240 
	0.12 
	0.03 
	
	0.2 
	
	0.66 

	
	
	(0.304) 
	
	(0.355) 
	
	
	
	
	

	
	
	
	
	[0.66] 
	
	
	
	
	

	North Central 
	0.01 
	
	0.01 
	
	
	0.01 
	
	0.03 

	
	
	
	
	
	
	
	[0.03] 
	
	

	
	
	
	
	
	
	
	«0.053» 
	
	

	
	
	
	
	
	
	
	(0.03) 
	
	

	Ohio Valley 
	
	«0.708» 
	
	«0.035» 
	
	«0.628» 
	
	

	
	
	0.09 
	0.690 
	0.38 
	
	
	0.56 
	
	1.72 

	
	
	
	(0.93) 
	(0.21) 
	(0.05) 
	
	(0.531) 
	
	

	
	
	
	[0.93] 
	
	[0.05] 
	
	[0.74] 
	
	

	South Central 
	
	
	
	
	«0.081) ) 
	
	«0.138» 
	

	
	
	
	
	
	
	
	0.24 
	0.28 
	0.52 

	
	
	
	
	
	
	
	(0.2) 
	(0.32) 
	

	
	
	
	
	
	
	[0.2] 
	
	[0.32] 
	

	South Atlantic 
	
	
	
	
	«0.138» 
	«0.653» 
	
	

	
	
	
	
	
	
	0.21 
	0.72 
	0.04 
	0.97 

	
	
	
	
	
	
	
	(0.97) 
	
	

	
	
	
	
	
	
	[0.01] 
	[0.96] 
	
	

	Total Supply 
	1.200 
	0.93 
	0.75 
	0.05 
	0.24 
	1. 73 
	0.32 
	5.22 

	« » = Spatial Equilibrium Solution 
	( ) = Bose-Einstein Solution 
	
	
	
	

	[ ] 
	= Linear Programming Solution 
	Those without parenthesis are actual flows. 
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� Other contributions include Isard and Bramhall (1966), Theil (1967) and Boyce and Hewings (1980).





� An alternative formulation was established by Erlander (1977, 1980)


� We do not consider the phenomenon of self-organization in the dissipative structure where a hexagonal structure arises from heat diffusion and viscous forces if the temperature difference is maintained in the so-called Raleigh-Benard hydrodynamic instability. The theory of dissipative structure does not invalidate the second law of thermodynamics; but rather, it illustrates a recently developed for�from-equilibrium process of a synchronized spatial pattern en route to equilibrium. See Glansdorff and prigogine (1971) and Coveney and Highfield (1990) for detail.


� To facilitate computations, we employ � EMBED Equation.3  ��� for large Xij





� The LINDO software package (R. Schrange, 1989) was used to obtain the optimum solution of the linear programming model; a quadratic programming package by Cutler and Pass (1971) was employed to solve for the optimum solution to the spatial equilibrium model; and the GINO (J. Liebman, L. Lasdon, L. Schrage and A. Warren, 1988) program was used to derive the Bose-Einstein solution.


� Einstein did not believe that the universe was governed by chance; however, he won the Nobel prize for his contribution to the quantum theory (S. Hawkings, 1988).
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