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Abstract

This paper aims to show that Data Envelopment Analysis (DEA) is an efficient

tool to assist investors in multiple criteria decision-making tasks like assessing hedge

fund performance. DEA has the merit of offering investors the possibility to con-

sider simultaneously multiple evaluation criteria with direct control over the priority

level paid to each criterion. By addressing main methodological issues regarding the

use of DEA in evaluating hedge fund performance, this paper attempts to provide

investors sufficient guidelines for tailoring their own performance measure which re-

flect successfully their own preferences. Although these guidelines are formulated in

the hedge fund context, they can also be applied to other kinds of investment funds.
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Introduction

The highly successful performance of the so-called hedge funds over the past two decades,

notably during the long bull equity market of the 1990s, has made them quickly well-

known to financial communities as well as to the public. While hedge funds still manage

only $1 trillion at the end of 2004, a fraction of the $8 trillion invested by mutual funds,

their assets have ballooned from only about $150 billion a decade ago. With over 8,000

hedge funds now available, fund selecting is quite challenging for investors. Hence,

before any due-diligence process, investors first need an efficient tool to assist them in

screening task in which the most important evaluation is undoubtedly fund (historical)

performance.

In general, the historical performance of funds is defined as their return adjusted

for risk. According to traditional financial theories, the risk is measured either by the

standard deviation of returns or by the correlation of fund returns with market factors

via different betas1. Most of these measures, even though validated in ”buy-and-hold”

portfolios of mutual funds and pension funds, are irrelevant within the context of hedge

funds. On the one hand, hedge fund returns are documented as usually asymmetric and

kurtotic, a feature largely imputed to the intensive use of short sales, leverage, derivative

instruments and to the free call-option like incentive structure, all specific to only the

hedge fund industry. On the other hand, their short-term movements across diverse asset

categories and the market neutral absolute investment objective of hedge fund managers

make it really delicate to identify market factors necessary to the use of multi-factorial

models2. Recent techniques enlarge the evaluation dimension to the skewness (Stutzer

2000), the skewness and the kurtosis (Gregoriou & Gueyie 2003) or to the whole dis-

tribution of returns (Keating & Shadwick 2002) in order to take into account the non

normality of return distributions. Despite this significant progress, these measures do

not allow considering after-net-returns fees paid by investors if only. Besides, most of

them are restrictive in the sense that they often assume very simplistic decision-making

rules which are common to all investors.

Yet, it is well documented that actual evaluation criteria, in fact, may be more com-

plicated and differ significantly from theoretical formulations. Not only are there many

1When fund’s risk is measured by betas, fund performance is simply the alpha.
2Unlike other kinds of investment funds, hedge funds are loosely regulated, and in many cases, are

largely exempted from legal obligations as the case of offshore hedge funds. Hedge fund managers thus
have a broad flexibility in determining the proportion of securities they hold, the type of positions (long or
short) they take and the leverage level they make. As a consequence, they are free to make very short-term
movements across diverse asset categories involving frequent use of short sales, leverage and derivatives to
attempt to time the market.
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attributes to consider, each one being associated with a priority level, but also these at-

tributes and their importance level are usually quite specific to each investor. The need to

consider simultaneously multiple criteria while incorporating investors’ own preferences

is natural since they are do not always share the same financial objective, risk aversion, in-

vestment horizon, etc. From such perspectives, the Data Envelopment Analysis approach

(hereafter, DEA) seems particularly appealing as it provides the possibility of incorpo-

rating many criteria at the same time, together with a direct control over the importance

level paid to each criterion by means of a tailor-made optimizing system.

DEA can be roughly defined as a mathematical optimizing technique first introduced

by Charnes, Cooper & Rhodes (1978), based on Farrell (1957)’s efficiency concept, to

measure the efficiency (technical, allocative, economic, etc.) of decision-making units

(hereafter, DMU) whose objective consists in transforming multiple inputs into multiple

outputs. The merits of the DEA method lies in providing an unique aggregate measure

for each DMU from a system of multiple inputs and multiple outputs and in putting

emphasis on the ”best observed practices” in a comparative perspective. In addition,

DEA allows considering inputs and outputs whose measure units are different, a property

known as ”units invariance”3. Furthermore, it makes no assumption on the form of the

relation between inputs and outputs.

Because of its many advantages, DEA has been applied in various fields including

public administration (to evaluate hospitals, administrative offices, educational establish-

ments or to resolve siting problems), engineering (to evaluate airplanes and engines),

commerce (to evaluate supermarkets), finance (to evaluate bank branches, micro-finance

institutions, assurance companies, to identify dominant financial assets and recently to

assess investment funds’ performance). The application of DEA is generally proceeded

in two main perspectives: (1) to evaluate the efficiency of DMUs whose activities are to

employ inputs to produce outputs; and (2) to solve decision-making problems with mul-

tiple criteria. It is in the second perspective that DEA can be applied to assess hedge fund

performance. Initiated by Murthi et al. (1997) to evaluate empirically the performance of

mutual funds, this idea has been applied and revisited by several studies, including those

on hedge fund performance. However, this literature is composed essentially of empiri-

cal applications, methodological issues remain either ignored or discussed in a simplistic

and superficial manner with little directive value. To the best of my knowledge, none of

methodological studies investigates the use of DEA in the hedge fund context.

3This is true provided that unit measures are the same for all DMUs in the sample. For example, one per-
son can measure outputs in mile and inputs in gallons of gasoline and quarts of oil while another measures
these same outputs and inputs in kilometers and liters with the same collection of automobiles .
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Following this literature, this paper is devoted to methodological issues in applying

DEA to hedge fund performance appraisal. Specifically, I focus on the choice of evaluation

criteria (DEA’s inputs and outputs), the choice of DEA models with and without negative

data on returns and performance, and on ”transcribing” specific evaluating preferences

of investors into mathematical constraints. By doing so, this study attempts to offer

investors sufficient guidelines in order to apply successfully the DEA method to assessing

hedge fund performance. Although it only addresses the hedge fund context, the whole

framework is completely applicable to mutual funds, pension funds, ethical funds, etc.

The remainder of the paper is organized as follows. Section 1 reviews briefly the

literature related to this study. Section 2 introduces basic concepts of the DEA method.

Section 3 addresses methodological issues of applying DEA to screening hedge funds

via their performance. Section 4 provides several numerical illustrations on a sample

including 38 hedge funds. The last section summaries and concludes the paper.

1 Related literature

This study emanates from two main streams of literature. The first one concerns DEA’s

use in making a selection when decision-makers have multiple criteria. The second

evolves evaluating the performance of investment funds by means of the DEA method.

With respect to the first literature, three studies can be enumerated: Thompson et al.

(1986), Tone (1999) and Powers & McMullen (2000). Thompson et al. (1986) dealt with

identifying feasible sites among six candidate sites for location of a very high-energy

physics lab in Texas. A comparative analysis between six sites was conducted by applying

the basic DEA model, incorporating project cost, user time delay, and environmental

impact data as selection criteria. These criteria are those evaluators want to minimize,

they thus form exclusively the DEA’s inputs. Being absent, the output is assumed to be

unique and equal to unity so that DEA can be applied. This setting is naturally plausible

as it is equivalent to considering inputs per one unity of output4. In the same spirit,

Tone (1999) described a japanese governmental project applying DEA to select a city to

take over some political functions of Tokyo as a new capital. In this study, the selection

criteria are composed of distance from Tokyo, safety indexes (regarding earthquakes and

volcanoes), access to an international airport, ease of land acquisition, landscape, water

supply, matters with historical associations; they form exclusively DEA’s outputs. The

4Inputs (outputs) include all criteria that evaluators want to minimize (maximize).
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input is thus set to be equal to unity5. It is important to note that in these studies,

only inputs (outputs) are available and thus output (input) is assumed to be unique and

equal to 1. Another common interesting point is that the evaluators, with prior expert

knowledge about the relative importance of chosen criteria, fixe lower and upper bounds

to the weights associated with each criterion in the mathematical optimization. In finance,

Powers & McMullen (2000) suggested using DEA to select dominant stocks among the

185 american largest capitalization stocks because this technique makes it possible to

incorporate multiple selection attributes such as the Price-Earnings Ratio, the systematic

risk and the total risk (DEA’s inputs), the Earnings Per Share ratio and the mean return

over 1 year, 3 years, 5 years and 10 years (DEA’s outputs).

The second literature relates to studies using DEA to evaluate the performance of

mutual funds, ethical funds and more recently hedge funds. Studies on mutual funds

include Murthi et al. (1997), McMullen & Strong (1998), Choi & Murthi (2001), Basso &

Funari (2001), Tarim & Karan (2001) and Sengupta (2003). All these studies assume that

fund performance is a combination of multiple attributes such as mean returns (DEA’s

outputs), total or systematic risk, expenses6, and sometimes even fund size, turnover

speed and minimum initial investment (DEA’s inputs). In the same vein, Basso & Funari

(2003) suggested putting in the DEA’s outputs, together with the mean return, an indi-

cator measuring funds’ ethical level fulfillments since according to them, ”the solidarity

and social responsibility features that characterize the ethical funds satisfy the fulfillment

of humanitarian aims, but may lower the investment profitability”.

The application of DEA in evaluating hedge funds emerged from the work of Gre-

goriou (2003). It was then supported by Gregoriou et al. (2005)7 and discussed in Kooli

et al. (2005). A common feature of these studies is that they only consider risk–return

performance without referring to fees. Besides, risks and returns are approximated re-

spectively by lower variations (what investors seek to minimize) and upper variations

(what investors seek to maximize) compared to a threshold defined by mean return.

Specifically, the inputs are composed of lower mean monthly semi-skewness, lower mean

monthly semi-variance and mean monthly lower return; the outputs include upper mean

monthly semi-skewness, upper mean monthly semi-variance and mean monthly upper

return. Another common feature is that they put emphasis on fund’s absolute rankings by

5I did not have access to documents related to this project. All the information mentioned here is extracted
from Cooper et al. (2000, p.169).

6The concept of expenses differs from study to study. It might include transaction costs and administration
fees (totaled in expense ratio) and loads (subscription or/and redemption costs).

7Gregoriou et al. (2005) is an extended version of Gregoriou (2003) and more complete while employing
the same DEA methodology with Gregoriou (2003). Therefore, I refer only to Gregoriou et al. (2005).
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employing modified DEA techniques: super–efficiency (Andersen & Petersen 1993) and

cross–efficiency (Sexton et al. 1986). By comparing DEA results with rankings provided

by Sharpe and modified Sharpe ratios via rank correlation coefficients, they observed a

weak consistency between DEA and these measures. In particular, Kooli et al. (2005)

found quite low correlation between DEA rankings and rankings given by the stochastic

dominance technique and concluded to a weak relevancy of DEA to fund performance

evaluation context. With regard to super-efficiency and cross-efficiency models, despite

their appealing property, i.e. providing fund absolute rankings, their technical caveats

cast doubts about their efficacy8. Hence, in what follows, I will only introduce the basic

DEA model and its dichotomic classification into assessing hedge fund performance.

2 DEA’s approach

2.1 DEA as a measure of technical efficiency

Before introducing the general approach of DEA and the basic DEA model, it is im-

portant to distinguish the ”technical efficiency”, on which is based this study, from the

”economic efficiency” usually applied in production context. According to Fried, Lovell

& Schmidt (1993, p.9-10), ”productive efficiency has two components. The purely tech-

nical, or physical, component refers to the ability to avoid waste by producing as much

output as input usage allows, or by using as little input as output production allows. . . .

The allocative, or price, or economic, component refers to the ability to combine inputs

and outputs in optimal proportions in light of prevailing prices.”. Consequently, tech-

nical efficiency measurement is based solely on quantity information on the inputs and

the outputs whereas the economic efficiency necessitates the recourse to information on

prices as well as on economic behavioral objectives of producers (cost minimization, profit

maximization or revenue maximization). Conceptually, the efficiency of each DMU un-

der evaluation is determined by the distance from the point representing this DMU to

the efficient frontier (production frontier in the case of technical efficiency; cost, revenue

or profit frontier in the case of cost, revenue or profit efficiency respectively). In figure 1,

the isoquant L(y) represents various combinations of two inputs that a perfectly efficient

8The super-efficiency model has two main caveats. First, it allocates so excessively high efficiency score to
efficient DMUs having extreme values of inputs and outputs that optimal values can sometimes ”explode”.
Second, it is infeasible in some circumstances (Zhu 1996, Seiford & Zhu 1999). The pitfall of the cross-
efficiency model is that it penalizes DMUs whose the combination of inputs and outputs is different from
the others while it highly praises average DMUs. Besides, the use of the mean, the variance, the mode or
the median, etc. of scores to completely rank DMUs is too ambiguous, especially when different indicators
provide different rankings.
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Figure 1: Technical efficiency versus economic efficiency with two inputs (Farrell, 1957)

firm like Q or Q′ might use to produce an unit of output. The line CC′ whose slope is

equal to the ratio of the prices of the two inputs represents the price constraint that all the

firms must face. Farrell (1957) defined OQ/OP as the technical efficiency level, OR/OQ

as the price (cost) efficiency and OR/OP as the overall efficiency of the firm P. In DEA,

the production frontier against which the technical efficiency of each DMU is derived is

empirically constructed from observed DMUs, and thus without any assumption on the

functional relation between inputs and outputs9. In other words, it is formed by a set of

best practices (the most efficient DMUs) and the other DMUs are enveloped by this fron-

tier, which explains the origin of the name ”Data Envelopment Analysis” of this method.

For the shake of brevity, hereafter I will use the term ”efficiency” to refer to the technical

efficiency and the term ”efficiency frontier” to denote the production frontier.

2.2 DEA’s basic model — CCR (1978)

2.2.1 The general formulation

Consider n DMUs under evaluation that use m inputs (X) to produce s outputs (Y) with

X and Y are semipositive10. The efficiency score hk assigned to the DMU k is the solution

9In econometric methods, the efficient frontier is estimated by supposing a particular form of the produc-
tion function (e.g., Cobb-Douglas, translog, etc.).

10The semipositivity signifies that all data are nonnegative but at least one component of every input and
output vector is positive.
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of the following optimizing system:

max
u,v

hk =

s

∑
r=1

uryrk

m

∑
i=1

vixik

(1)

subject to:

s

∑
r=1

uryrj

m

∑
i=1

vixij

≤ 1, j = 1, . . . , n (2)

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . , m (3)

where k is the DMU under evaluation, yrj is the amount of the output r of the DMUj, xij is

the amount of the input i of the DMUj, ur and vi (also called ”absolute weights”) are the

weights assigned respectively to the output r and the input i, ε is an infinitesimal positive

number imposed to assure that no input or output is ignored in the optimization, vixij

and uryrj are called ”virtual weights” of respectively the input i and the output r of the

DMUj.

Mathematically, the model’s objective is to seek for the most favorable (positive)

weight system associated with each input and each output which maximizes the weighted

sum of the outputs over the weighted sum of the inputs of the DMUk (hk), provided that

this ratio does not exceed 1 for any DMU in the sample (reflected by constraint (2)).

Given that the efficiency frontier contains efficient DMUs and envelopes inefficient ones,

and that the efficiency level of each DMU is, by definition, the distance from its position

to the efficiency frontier, it is natural to fixe the maximal value of the objective function

to unity11. Thus efficient DMUs will obtain a score of 1 and inefficient DMUs a score

smaller than 1.

Conceptually, each DMU is free to choose its own combination of inputs and outputs

so that it is as desirable as possible compared to other DMUs in the same category. Obvi-

ously, this combination must also be technically ”feasible” for others, that is the efficiency

level of any other DMU using this combination should not exceed the maximum attain-

able bounded by the efficiency curve (the constraint (2) is thus also applied to j = 1, . . . , n

with j 6= k). The idea is that if one DMU can not attain an efficiency rating of 100% under

this set of weights, then it can never be attained from any other set. It should be noted

that in practice, more constraints on weight systems can be imposed to take into account

11Mathematically, the maximal value of the objective function can be given any other number without
changing the relative efficiency of the DMUs. The choice of unity is to assure the coherence between mathe-
matical calculations and efficiency definitions.
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specific preferences of decision-makers. This point will be illustrated further.

Alternatively, the DEA original problem can be formulated as the following system:

min
u,v

hk =

m

∑
i=1

vixik

s

∑
r=1

uryrk

(4)

subject to

m

∑
i=1

vixij

s

∑
r=1

uryrj

≥ 1, j = 1, . . . , n (5)

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . , m (6)

where the objective is to seek for optimal weights so as to minimize the ratio of the

weighted sum of inputs to the weighted sum of outputs. The smaller this ratio, the better.

In this case, efficient DMUs have a score of 1 and inefficient ones have a score greater

than 1. Note however that the system (4-6) is less familiar within DEA’s applications in

finance than the system (1-3).

It is important to keep in mind that basic DEA models do provide a dichotomic classi-

fication, not a complete ranking of DMUs as all efficient DMUs have the same score equal

to 1. Besides, efficiency or inefficiency of DMUs is solely relative to the sample under

consideration. Hence, once the sample is modified, results may be very different.

2.2.2 The primal program

The optimizing systems (1-3) and (4-6) are fractional problems, non convex with frac-

tional constraints, which are quite difficult to solve. According to Charnes & Cooper

(1962, 1973) and Charnes et al. (1978), the fractional problem (1-3) (or 4-6) can be con-

veniently converted into an equivalent linear programming problem by normalizing the

denominator to 1 and maximizing (minimizing) the nominator. By doing so, we obtain

the input-oriented version (system (7-10)) and the output-oriented version (system (11-
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14)) of the so-called CCR model — the seminal model of the DEA method:

Input-oriented: max
u,v

hk =
s

∑
r=1

uryrk (7)

subject to:
m

∑
i=1

vixik = 1 (8)

s

∑
r=1

uryrj ≤
m

∑
i=1

vixij, j = 1, . . . , n (9)

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . , m (10)

or

Output-oriented: min
u,v

hk =
m

∑
i=1

vixik (11)

subject to
s

∑
r=1

uryrk = 1 (12)

s

∑
r=1

uryrj ≤
m

∑
i=1

vixij, j = 1, . . . , n (13)

ur, vi ≥ ε, r = 1, . . . , s; i = 1, . . . , m (14)

The input-oriented (output-oriented) version assumes that only inputs (outputs) can

be adjusted, outputs (inputs) being fixed.

2.2.3 The dual program

According to linear programming theories, each primal program is associated with a dual

program which provides the same optimal value of the objective function as the primal.

The system (7-10) thus has a dual below:

Input-oriented: min
θ,λ

θ (15)

subject to: θxik ≥
n

∑
j=1

λjxij, i = 1, . . . , m (16)

yrk ≤
n

∑
j=1

λjyrj, r = 1, . . . , s (17)

λj ≥ 0, θ unconstrained in sign (18)

with θ and λ are dual variables. Note that θ can not, by construction, exceed unity12.

12We can easily see that θ = 1, λk = 1, λj = 0 (j 6= k) is a feasible solution to (15-18). Hence, the optimal
value of θ can not be greater than 1. Besides, the constraint (16) implies that θ must be positive as X is

10



In a similar fashion, the dual of the system (11-14) is defined by:

Output-oriented: max
η,γ

η (19)

subject to: xik ≥
n

∑
j=1

γjxij, i = 1, . . . , m (20)

ηyrk ≤
n

∑
j=1

γjyrj, r = 1, . . . , s (21)

γj ≥ 0, η unconstrained in sign (22)

where η and γ are dual variables and η can not be, by construction, lower than 1.

In fact, the primal program can be solved directly to obtain the optimal efficiency

score. However, the dual program is usually preferred for the following reasons. On the

one hand, it is mathematically easier to find the optimal solution via the dual because of

a considerable reduction of constraints: from n + s + m + 1 constraints in the primal to

only s + m constraints in the dual. This calculating parsimony is of particularly appeal-

ing when dealing with large samples. On the other hand, the dual formulation has an

interesting economic interpretation. In economic terms, under the input-oriented form

(output-oriented form), the dual looks for a feasible activity — a virtual DMU which is

a linear combination of the best practices — that guarantees (uses) the output level yk

(the input level xk) of the DMUk in all components while using only a proportion of the

DMUk’s inputs θxik (producing higher outputs than DMUk’s outputs, ηyrk with η ≥ 1 ).

Hence, θ (or η) is defined as a measure of the efficiency level of the DMUk. Graphically,

in the input-output plan depicted in figure 2, under the input-oriented or input contrac-

tion setting, θ of the DMU A is the ratio DC/DA, with C being the virtual DMU which

serves as benchmark to measure the efficiency of A; under the output-oriented or output

expansion setting, η of the DMU A is measured by FH/AH with F being the reference

DMU for A now.

In order to obtain the efficiency scores of n DMUs, the optimizing system (primal or

dual) must be run n times with each time the DMU under evaluation changes.

Theorem 1 (Connexion between the CCR input-oriented version and the CCR output-oriented

version) Let (θ∗, λ∗) be an optimal solution for the CCR input-oriented version. Then (1/θ∗, λ∗/θ∗) =

(η∗, γ∗) is optimal for the corresponding CCR output-oriented version. Similarly, if (η∗, γ∗) is

optimal for the CCR output-oriented version, then (1/η∗, γ∗/η∗) = (θ∗, λ∗) is optimal for the

corresponding CCR output-oriented version (Seiford et al. 2004, p.17).

assumed to be semipositive.
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Figure 2: CCR efficiency frontier

3 A DEA framework for hedge fund performance appraisal

In financial literature, funds’ historical performance is often measured by the ratio of

return to risk. Traditionally founded on the ”mean-variance” basis, the evaluation di-

mension has been recently extended to the skewness (Stutzer index — Stutzer (2000)), to

the skewness and the kurtosis (the modified Sharpe ratio — Gregoriou & Gueyie (2003)),

even to the whole distribution of returns (Omega index — Keating & Shadwick (2002))

in an attempt to take into account the non normality features of returns. Despite this

improvement, most of these measures are highly restrictive in the sense that they usually

assume simplistic decision-making rules common to all investors.

Yet, there are suggestions that actual individual decisions differ significantly from

theoretical formulations since they are much more complicated and quite specific to in-

vestors. Often there are more attributes to consider and for each investor, each attribute

does not necessarily have the same priority level. While some investors are more con-

cerned with central tendencies (mean, variance), others may care more about extreme

values (skewness, kurtosis). One kind of such preferences is summarized by the posi-

tive preference for skewness first invoked by Arditti (1967) and then supported by Jean

(1971), Kraus & Litzenberger (1976), Francis & Archer (1979), Scott & Horvath (1980),

Kane (1982), Broihanne et al. (2004). It implies that individuals prefer portfolio A to port-

folio B with higher mean return if both portfolios have the same variance, and if portfolio

A has greater positive skewness, all higher moments being the same. In other words,

individuals may attach more importance to the skewness than to the mean of returns.

Despite the diversity of preferences for moments of returns, most measures assume the
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same preference structure for all investors. Consider for example the modified Sharpe

ratio (hereafter, M-Sharpe) (Gregoriou & Gueyie 2003) computed by the following equa-

tion:

M−Sharpe =
r − r f

MVAR
=

r − r f

W
[

µ −
{

zc + 1
6 (z2

c − 1) S + 1
24 (z3

c − 3zc) K − 1
36 (2z3

c − 5zc) S2
}

σ
]

(23)

where r is the mean return, r f is the average risk-free rate, W is the amount of portfolio

at risk, µ is the mean return and naturally equal to r, σ is the standard deviation of

returns, S is the skewness, K is the kurtosis excess, zc is the critical value for probability

(1 − α) (zc = −1.96 for a 95% probability), MVAR (modified value-at-risk) is introduced

by Favre & Galeano (2002). According to Favre & Galeano (2002) and Gregoriou & Gueyie

(2003), all investors are certainly concerned about the skewness and the kurtosis of returns

but they share the same preference structure which is necessarily in the form of MVAR.

This rigidity is not only restrictive but might bias significantly investors’ choice of funds

as their true evaluation criteria are not considered at all or considered but in a biased

manner.

In addition to that, investors may need to take account of sales loads charged by the

fund on their entrance into (front-end sales load) or/and on their exit of the fund (back-

end or deferred sales load). Unlike management fees which are directly deducted from

the fund’s value, sales loads are charged on the net returns paid to investors13. As a

result, a fund with good performance and a high percentage of loads is not necessarily

more attractive than another fund which has lower performance but charges lower loads.

Moreover, as argued by McMullen & Strong (1998), Morey & Morey (1999) and Powers

& McMullen (2000), investors may also be concerned about fund’s performances over

various time horizons (over the last year, the last 3 years, the last 5 years and sometimes

the last 10 years). Such information is undoubtedly valuable as it provides much more

informative insight into fund’s perspective than the performance over only one horizon.

Furthermore, even when investors care about the return and the risk, or the perfor-

mance of funds over only one horizon, it is often quite difficult to choose an absolutely

13Murthi et al. (1997), McMullen & Strong (1998), Tarim & Karan (2001), Choi & Murthi (2001) and Sen-
gupta (2003) advocated incorporating also expense ratio (in percentage of fund assets, covering various
operating expenses incurred by the fund management such as management fees, administrative fees, ad-
visory fees) in evaluating fund performance. This element which is obviously necessary to appraise the
performance of funds in a productivity perspective, i.e. their capacity to exploit efficiently input resources
(fund expenses are considered here as a production factor), is irrelevant in this context where inputs and
outputs are selection criteria chosen by investors. In this regard, investors are not likely concerned by these
expenses as they are directly deducted before calculating funds’ net asset value — the real value of investors’
investments. Hence, such expenses are generally invisible to investors.
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suitable measure among a wide range of existing measures in the literature. This dif-

ficulty is particularly true for the choice of risk and performance indicators because of

inexistence or deficiency of mechanisms to validate empirically them. Consequently, in-

vestors are sometimes in need of considering simultaneously several measures. Here

again, they do not necessarily share the same preferences for such and such measures.

Given these specificities in performance evaluating practices, the DEA’s approach

seems very appealing. In fact, the application of DEA into hedge fund performance

appraisal can be made in two perspectives. The first one consists in evaluating the

productive performance of funds where the latter are considered as a particular type of

production units which employs multiple resources (risks, various operating expenses,

turnover speed, etc.) to realize profits (returns). The second, which is in the spirit of

Thompson et al. (1986), Tone (1999) and Powers & McMullen (2000), aims to assess funds

as decision–making units whose inputs and outputs are evaluation criteria chosen by

decision-makers. It is the second perspective that interests investors as DEA, with its

broad flexibility, allows investors to tailor their own evaluation tools corresponding the

most to their own preferences. Since each investor naturally has different risk aversion

levels, performance objectives and other distinct constraints, the tailor-made possibility is

essential to correctly screen fund.

In this context, the DEA method can be applied to evaluate either the ”local” perfor-

mance or the ”global” performance of hedge funds. By the ”local performance”, I imply

the performance measured by the weighted sum of several criteria of gain (or return)

on the weighted sum of several criteria of risk and possibly certain types of expenses. In

contrast, the term ”global performance” denotes the performance synthesized from either

several measures of ”local” performance, or elementary performances over several tem-

poral horizons. Within this framework, the application of DEA (in its basic form) raises

four main questions: (1) how to choose inputs and outputs, (2) what version to choose

(input-oriented or output-oriented), (3) how to deal with negative values in the inputs

or/and the outputs if they exist14, and (4) how to incorporate more specific preferences

of investors into the mathematical formulation. If the first, the second and the fourth

questions are relevant to any application fields, the third one is quite specific to data of

returns and performances. These issues will be addressed successively in what follows.

14Inputs and outputs of DEA are originally assumed to be semipositive.
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3.1 Evaluation criteria and the choice of inputs and outputs

Unlike applications of DEA in production fields where inputs and outputs are tangible

elements, the choice of inputs and outputs is not straightforward when dealing with fund

performance. Nevertheless, in a multiple criteria decision-making framework, it is logical

to consider inputs as criteria that investors want to minimize and outputs as those they

want to maximize. Hence, if investors seek to evaluate the funds’ ”local” performance, i.e.

returns15 to risks, the inputs can be (1) several measures of risk (standard deviation, kur-

tosis, beta, various measures of value-at-risk) over one (or several) horizon(s), (2) possibly

the sales loads; the outputs can be composed of (1) several measures of returns (mean,

skewness) — over one (or several) horizon(s). The difference between the configuration

suggested here (to evaluate fund ”local” performance) and that assumed by standard

performance indicators is that according to the former, each investor knows perfectly his

relevant evaluation criteria but does not know the functional relation between these cri-

teria as well as the exact trade-off between them, which is not the case of the modified

Sharpe ratio as previously described. The case where investors know the relative trade-off

between these criteria will be discussed further.

Otherwise, if investors want to evaluate funds by considering several elementary per-

formances simultaneously, they can calculate the global performance by (1) including in

the outputs either the performances measured by the same technique on several periods,

or the performances on the same period but measured by several indicators, (2) setting

the input equal to one. It is important to notice that in this setting, all selection criteria are

those investors want to maximize, they thus form exclusively DEA’s outputs; meanwhile,

there is no input. Assuming the presence of one input equal to 1 makes it possible to

apply DEA without any modification of results. As explained earlier, we are in a basic

configuration in which there is one input and several outputs and the quantity of each

output is often ”standardized” by the quantity of the input to obtain the unit outputs

(per one unit of the input) in order to facilitate calculations. This setting is employed by

Thompson et al. (1986) and Tone (1999).

Following the principles evoked above, each investor will determine, according to his

own preferences, the inputs and outputs for DEA while complying with general rules as:

– Inputs and outputs must be criteria indispensable to the appraisal of fund perfor-

15The term ”return” should be understood here in broad sense. In traditional language of portfolio the-
ories, the concept of return is always associated to the arithmetic mean of elementary returns over a given
period. By ”return”, I imply in what follows any measure, in addition to the mean return, that is indicative
of fund’s expected returns such as the skewness.
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mance.

– The number of inputs and outputs should be lower than the number of funds. In

general, the number of funds should be at least three times larger than the number

of inputs and outputs.

Any violation of these rules will lead to a deficiency of the discriminatory power of DEA.

As a result, we risk obtaining an excessive number of dominant (efficient) funds whereas

some of them are not rightly so16.

3.2 Input-oriented or output-oriented versions ?

In general, when inputs and outputs are semipositive, the choice between the CCR input-

oriented version and the CCR output-oriented version can be simply made at users’ dis-

cretion following their preferences. Note that the input-oriented version (output-oriented

version) assumes that outputs (inputs) are fixed, only inputs (outputs) can be adjusted.

This assumption conditions the reference fund on the efficient frontier to which is com-

pared the target fund and thus determines the distance between the former and the latter,

this distance measuring the efficiency level of the latter. The theorem 1 describes the cor-

respondence between the optimal solutions of the two versions. We can easily see that

the two versions of the CCR model provides the same classification of inefficient DMUs17

(efficient DMUs always obtain a full score of 1 under any version). Nevertheless, it is

interesting to notice that all studies which apply DEA to evaluating fund performance

adopted the input-oriented version whatever the DEA model is used. This popularity

is undoubtedly due to the fact that this mathematical form shares the same logic as

Markowitz’s efficient frontier construction, that is to minimize the risks (inputs) for a

defined level of returns (outputs).

However, when there are only outputs (inputs), the input-oriented (output-oriented)

version is required as in this case, we assume the existence of one input (output) whose

quantity is fixed equal to 1.

16The terms ”dominant funds” and ”efficient funds” will be used interchangeably hereafter to indicate
funds having a full efficiency score of 1.

17It is important to specify that this equivalence between the input-oriented version and the output-
oriented version is only valid under the constant returns-to-scale technology assumed by the CCR model.
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3.3 Dealing with negative inputs and outputs

DEA models as originally designed require that inputs and outputs are semipositive,

i.e. all inputs and all outputs are non negative and at least one input and one output

are positive. In many application fields like production economics, negative inputs and

outputs naturally make no sense. However, in fund performance appraisal context, it is

likely that we sometimes have negative values like mean, skewness of returns, or some

performance indicators, etc.

Although in the CCR model, or more generally in basic DEA models, inputs and

outputs are systematically required to be semipositive, we can easily see that negative

values in inputs and outputs are tolerated in following ways without any incidence on

the solubility of DEA optimizing systems (Cooper et al. 2000, p.304-305):

– If there are at least one input and one output positif, either the input-oriented ver-

sion or the output-oriented version can be used;

– If all outputs (inputs) are negative and at least one input (output) is positive, the

input-oriented (output-oriented) version is required;

– If there is no (effective) input (output) and all outputs (inputs) are negative, the

input-oriented (output-oriented) version is required;

– The case where all inputs and all outputs are negative at the same time, which is

extremely rare in fund performance appraisal context, can not be dealt with within

the DEA framework.

Note that in the second and the third cases, the optimal value of the objective function

will be negative.

3.4 Taking account of investors’ more specific preferences

The CCR model as presented earlier allows a quasi-absolute freedom in the determination

of the weights {u, v} so that each funds obtains a maximum score of efficiency, given its

input and output level. Specifically, {u, v} are only required to be equal to or greater than

an infinitesimal positive number ε. This constraint is essential to assure that all selected

evaluation criteria are considered in the evaluating process. Nevertheless, such flexibility

level also implies that important, even excessive, weights can be assigned to the input(s)

or/and the output(s) which make the funds as efficient as possible compared to others.
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As a result, this setting is only plausible when investors have no idea about the trade-

off between the selected criteria. When such information is available, it can be easily

incorporated in DEA optimizing systems by restricting the absolute weights {u, v} or the

virtual weights {uy, vx} associated with each input and each output.

An investor in full knowledge of the ”price” range for each evaluation criterion —

e.g. the coefficient of aversion to the mean, the variance, the skewness or the kurtosis of

returns — can have recourse to constraints like:

ur ≤ ξr (24)

vi ≥ ψi (25)

αr ≤ ur ≤ βr (26)

γi ≤ vi ≤ δi (27)

An investor who knows more or less his personal or conventional trade-off or substi-

tution rate between evaluation criteria can add following constraints into original DEA

program:

ur

vi
≤ ζ (28)

vi

vi+1
≤ κ (29)

πivi + πi+1vi+1 ≤ vi+2 (30)

An investor who wants to control the relative importance of each criterion in the per-

formance appraisal process will formulate additional constraints on the virtual weights

as follows:

ar ≤
uryrj

∑
s
r=1 uryrj

≤ br (31)

ci ≤
vixij

∑
m
i=1 vixij

≤ di (32)

uryrj ≤ ur+1yr+1,j (33)

vixij ≤ vi+1xi+1,j (34)

where ξ, ψ, α, β, ζ, κ, a, b, c, d are values pre-defined by investors to bound absolute and

virtual weights.

There are certainly many other forms of additional constraints because of a broad
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variety of investors’ preferences. The constraints mentioned above are to give examples

of ”transcribing” more specific preferences into mathematical formulations. A numerical

illustration will be provided further.

This possibility of exerting a direct control on the relative importance of each evalu-

ation criteria in assessing fund performance, along with the choice of evaluation criteria

(inputs and outputs), makes it possible for each investor to conceive a customized mea-

sure corresponding to his preferences. With such quality, the DEA approach is an efficient

and complementary tool to other existing measures.

4 Illustrative applications

4.1 Data

To illustrate the use of DEA in assessing the performance of hedge funds, I used a sample

of 38 hedge funds belonging to the category Equity Hedge18. Data includes 60 monthly

returns covering the period of January 2000 to December 2004. Table 1 reports some

descriptive statistics of these funds.

As we can see, return distributions of many funds show highly positive (negative)

skewness signifying higher probability of extreme positive (negative) values compared

to that implied by the normal distribution. Besides, many of them possess high kurto-

sis excess, which indicates more returns close to the central value but also more regular

large positive or negative returns than in a normal distribution. The normality assump-

tion of return distributions is tested by means of three tests: Shapiro-Wilk, Kolmogorov-

Smirnov, and Jarque-Bera. Results provided by the Shapiro-Wilk and Jarque-Bera tests are

quite similar although they are rather different from those provided by the Kolmogorov-

Smirnov test. This divergence is likely due to the sample’s limit size as the Kolmogorov-

Smirnov test is more appropriate to large samples. According to the Shapiro-Wilk test,

documented as the most reliable for small samples, the normality assumption is rejected

in 14 out of 38 cases at the confidence level of 95%. These findings imply much higher

return or risk of these funds than those approximated under normality assumption. They

thus highlight the importance of incorporating moments of order higher than the mean

and the variance when appraising funds’ return and risk profiles.

18These 38 funds are extracted from a database provided by the company Standard & Poor’s. Equity
Hedge covers several different strategies whose investments are focused on the equity markets. Its two large
categories are Global Macro and Relative Value.
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Table 1: Descriptive statistics

Funds Min Max Me SD SK KU S-W K-S J-B
(%) (%) (%) (%)

1 -6.16 10.20 0.68 3.77 0.34 -0.35 0.98 0.11 1.43
2 -7.89 7.69 0.16 3.33 -0.07 -0.25 0.99 0.06 0.20
3 -12.51 19.66 -0.30 5.59 0.32 1.86 0.95** 0.12 9.72***
4 -7.25 5.63 0.25 3.04 -0.27 -0.49 0.98 0.07 1.31
5 -11.37 11.95 0.10 4.65 -0.10 0.09 0.99 0.06 0.12
6 -6.50 5.92 0.06 2.34 -0.36 0.29 0.98 0.08 1.50
7 -14.67 24.36 -0.11 6.23 0.91 3.37 0.95*** 0.11 36.60***
8 -22.96 33.89 -0.18 8.86 0.71 2.69 0.96** 0.06 23.09***
9 -7.87 8.59 -0.01 3.92 -0.01 -0.43 0.98 0.07 0.46
10 -11.84 13.05 0.03 5.40 0.16 -0.12 0.99 0.08 0.29
11 -8.19 17.11 1.08* 4.95 1.18 2.13 0.92*** 0.16* 25.40***
12 -13.49 9.11 0.01 4.35 -0.43 0.66 0.98 0.08 2.98
13 -6.77 7.23 -0.57 3.36 0.12 -0.75 0.98 0.07 1.53
14 -40.85 19.45 -0.73 9.02 -1.42 5.88 0.90*** 0.15 106.6***
15 -12.04 14.17 0.23 5.53 -0.05 0.06 0.98 0.07 0.03
16 -5.76 6.58 0.24 2.83 0.13 -0.22 0.99 0.06 0.29
17 -7.10 6.27 0.33 3.25 -0.15 -0.49 0.98 0.06 0.83
18 -6.33 5.94 0.15 2.65 0.00 -0.33 0.99 0.08 0.28
19 -7.21 8.18 0.25 3.43 0.17 -0.46 0.99 0.06 0.81
20 -9.90 14.45 0.12 4.54 0.25 0.71 0.99 0.05 1.91
21 -6.81 9.77 0.64* 2.75 0.48 2.08 0.96* 0.10 13.19***
22 -9.20 7.57 -0.23 3.95 -0.09 -0.38 0.99 0.05 0.44
23 -5.31 6.82 0.33 2.48 0.62 0.59 0.96** 0.15 4.66***
24 -13.75 15.03 -0.81 5.72 -0.10 0.30 0.98 0.09 0.33
25 -9.78 19.59 0.09 5.46 1.35 3.85 0.90*** 0.12 55.13***
26 -16.34 25.90 1.34 * 5.31 1.35 10.02 0.72*** 0.24*** 269.3***
27 -1.24 5.45 0.52*** 1.10 1.64 5.81 0.88 *** 0.17* 111.2***
28 -2.37 15.86 0.74 ** 2.39 4.36 27.27 0.63 *** 0.19** 2050***
29 -15.48 22.37 0.64 5.07 1.23 7.06 0.85 *** 0.16* 139.7***
30 -13.76 17.90 -0.35 5.29 0.50 1.86 0.97 0.09 11.22***
31 -14.30 17.93 0.28 5.00 0.21 2.69 0.95** 0.10 18.58***
32 -6.93 11.54 0.00 3.15 0.73 2.47 0.96** 0.08 20.64***
33 -7.88 11.53 0.08 4.07 0.58 0.71 0.97 0.08 4.57
34 -7.12 8.67 -0.07 4.12 0.20 -0.64 0.97 0.08 1.42
35 -5.68 10.93 1.10*** 2.97 0.38 1.30 0.96 * 0.12 5.66*
36 -10.13 7.95 0.58 3.75 -0.29 -0.05 0.98 0.08 0.82
37 -6.48 11.01 0.38 2.60 0.71 4.25 0.93 *** 0.10 50.14***
38 -9.93 12.48 -0.13 4.10 0.04 0.71 0.98 0.07 1.26

Me = Mean, SD = Standard deviation, SK = Skewness, KU = Kurtosis excess relatively to
the normal distribution. S-W = Shapiro-Wilk, K-S = Kolmogorov-Smirnov, J-B = Jarque-Bera
are normality tests on return distributions. ***, **, ** denote the rejection of the normality
assumption at respectively the 99%, 95% and 90% confidence levels.
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4.2 Assessing hedge fund local performance

4.2.1 Settings

Due to unavailable data on sales loads charged by the funds in the sample, illustrations

are limited to considering their historical return and risk profiles. Since the distribution of

hedge fund returns is documented as usually non gaussian, it is important to incorporate

these features into the selection of evaluation criteria (DEA’s inputs and outputs). Several

settings are likely.

The first setting assumes the case where investors have a positive preference for odd

moments and a negative preference for even moments. Given these preference, it is

logical to include in the inputs the standard deviation and the kurtosis of returns, and in

the outputs the mean and the skewness. In this configuration, the problem of negative

outputs raises. More specifically, 11 out of 38 funds under consideration have a negative

mean, 12 funds have a negative skewness, 4 funds among them have simultaneously

negative mean and negative skewness.

The second setting is designed in the spirit of Gregoriou et al. (2005) and Kooli et

al. (2005), following which it is more clever to reason in terms of partial variations. As

documented in the literature, investors are likely to be averse only to volatility under

the Minimum Accepted Return (MAR)19, which are called lower variations. In contrast,

they appreciate volatility above this value, which are called upper variations. Thus, the

composition of inputs and outputs can be determined in the following manner. The

inputs include lower mean, lower semi-standard deviation, lower semi-skewness and

lower semi-kurtosis which are obtained from returns lower than the MAR represented by

the average rate over the period january 2000 to december 2004 of the US 3-month T-bill.

The outputs contain upper mean, upper semi-standard deviation, upper semi-skewness

and upper semi-kurtosis obtained from returns greater than the MAR. In addition to his

financial finesse, this configuration has the clear-cut advantage to avoid the problem of

negative inputs and outputs.

Now assume furthermore that investors are more concerned for extreme values than

central ones. Hence, they naturally pay more attention to the skewness and the kurtosis

than to the mean and the standard deviation. Mathematically, they will require that the

contribution of the upper (lower) skewness and kurtosis to the efficiency score of the

fund must be greater than or equal to the contribution of the upper (lower) mean and

19The determination of the Minimum Accepted Return is purely subjective and specific to each investor. It
can be a risk-free rate or any rate required by investors.
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standard deviation. This preference can be taken into consideration by adding four more

constraints on virtual weights into the optimization system:

y3ju3 > y1ju1 ; x3jv3 > x1jv1

y3ju3 > y2ju2 ; x3jv3 > x2jv2

y4ju4 > y1ju1 ; x4jv4 > x1jv1

y4ju4 > y2ju2 ; x4jv4 > x2jv2

where y1j, y2j, y3j, y4j are the amount of upper mean, upper standard deviation, upper

skewness and upper kurtosis of the fund j under consideration; x1j, x2j, x3j, x4j are the

amount of its lower mean, lower standard deviation, lower skewness and lower kurtosis;

u1, u2, u3, u4, v1, v2, v3, v4 are the weights associated respectively with these outputs and

inputs.

Otherwise, if investors are more or less markowitzian, i.e. they rely essentially on the

mean and standard deviation to assess fund performance, the following constraints are

necessary so that this preference is incorporated:

y1ju1 > y3ju3 ; x1jv1 > x3jv3

y1ju1 > y4ju4 ; x1jv1 > x4jv4

y2ju2 > y3ju3 ; x2jv2 > x3jv3

y2ju2 > y4ju4 ; x2jv2 > x4jv4

The third setting illustrates another case where investors need to reconcile funds’ local

performance over several horizons, from a long period to a more recent period in the past.

To this end, DEA inputs are modeled by the MVAR (described by the denominator of

equation 23) representing the loss limits over three horizons: 1 year, 3 years and 5 years;

outputs are the mean returns over these three horizons. Again, many cases of negative

outputs are found: 12 cases over the one-year horizon, 22 cases over the three-year horizon

and 11 cases over the five-year horizon, among them 5 funds have all negative outputs.

It is important to keep in mind that the above settings are only some standard con-

figurations used by investors. Given the diversity of investors’ preferences, many other

configurations are also expected.
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4.2.2 Choice of CCR version

After inputs and outputs corresponding to investors’ preferences are specified, the next

step consists in running the foregoing inputs and outputs under the CCR model. Then

what version to choose, input-oriented or output-oriented? Following principles high-

lighted in the section 3.3, we are constraint to adopt the input-oriented version for the

first and the third settings where outputs are sometimes all negative. Regarding the sec-

ond setting, either version is possible. However, in this study, the input-oriented version

is chosen for all settings. Its primal and dual programs are described respectively by the

systems (7-10) and (15-18).

Note that the weights assigned to each output and input are constrained to be equal

to or greater than 0.001 (ε = 0.001)20 to assure that all criteria are considered in the

optimization program.

4.2.3 Results

Table 2 displays detailed results on DEA score, absolute weights (u, v) and virtual weights

(uy, vx) obtained under a CCR input-oriented setting with mean and skewness as outputs,

standard deviation and kurtosis as inputs. Funds with negative scores are those having

simultaneously negative mean and negative skewness. Given the difference of measure

scale between mean, standard deviation on the one hand and skewness, kurtosis on the

other hand, virtual weights rather than absolute weights are more informative about key

factors (inputs and outputs) that make some funds dominant compared to others in the

sample. Each of the five funds qualified as dominant (1, 11, 27, 28, 35) has its own

combination of evaluation criteria to attain the full efficiency. For fund 27 and fund 35,

the virtual weights associated with the mean and the standard deviation are much higher

than those associated with the skewness and the kurtosis. By referring to the statistics

of returns given in table 1, we find that they effectively have fairly high mean and small

standard deviation in comparison with the others. Their profiles are thus well adapted

to markowitzian investors. By contrast, the dominance of fund 28 is primarily due to

its positive skewness. In fact, this fund has the highest positive skewness in the sample.

With fund 1, the dominance is mainly based on the mean and the kurtosis while with

fund 11, dominant factors are the mean, the skewness and the kurtosis. These findings

imply that not all dominant funds are necessarily adapted to an investor having a precise

20In fact, all calculations were already tested with several values of ε: 0, 0.0001, 0.001 and 0.01. However,
performance scores changed very slightly while the relative rank between funds remains unchanged. Thus,
ε was fixed to be equal to 0.001 to facilitate result presentation.
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preference. Consequently, when no additional constraint is formulated like in this setting,

an investor who is not completely indifferent among evaluation criteria should identify

the factors determining the efficiency of dominant funds and select only those whose

profiles correspond the most to his preferences.

Results on DEA scores across various settings are summarized in table 3. Note that

in the first and the third settings (respectively in columns 2 and 6), funds with negative

scores are those whose all outputs are negative. Several points are noteworthy. In general,

results are rather sensitive to the specification of evaluation criteria and supplementary

constraints. Not only the number of dominant funds varies (from 1 to 5) but also dom-

inant members differ across settings. Look at for example fund 26 which is qualified as

dominant only when its returns and risks over three horizons are considered simultane-

ously.

Related to the second setting, as would be expected, the introduction of additional

constraints on virtual weights naturally deteriorates efficiency scores and the short list

of dominant funds becomes more selective. When preferences for extreme values (repre-

sented by the skewness and the kurtosis) are explicitly formulated, only fund 28 (among

five funds 1, 8, 11, 25, 28 qualified as dominant without any additional constraints) sat-

isfies this requirement. Similarly, when more importance is explicitly attached to central

values (represented by the mean and the standard deviation), there are only three funds

8, 11, 28 in the dominant list. These results highlight the importance of correct specifica-

tion of relevant DEA inputs and outputs as well as additional constraints which reflect

best investors’ evaluation preferences.

At empirical level, one may notice persistent dominance of several funds across set-

tings like the case of fund 28, which stays dominant whatever preferences are considered.

This feature can be regarded as a sign of the robustness of fund 28’s performance rela-

tively to other funds in the sample.

Since we are examining funds’ local performance without sales loads, it could be

interesting at this point to contrast DEA results in the first and the second settings with

fund rankings provided by the traditional Sharpe ratio (Sharpe 1966) and the M-Sharpe

ratio. The latter is computed following equation 23 while the former is calculated by the

formula below:

Sharpe =
r − r f

σ
(35)

where r is the average return of the fund, r f is the average risk-free rate approximated

here by the US 3-month T-bill rate, σ is the standard deviation of fund returns. Note that
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Table 2: Performance with standard deviation-kurtosis as inputs, mean-skewness as out-
puts

Funds Scorea Absolute weights (u, v)b Virtual weights (uy, vx)
Me SK SD KU Me SK SD KU

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 1 147.427 0.001 0.167 0.375 0.9997 0.0003 0.0063 0.9937
2 0.228 142.003 0.001 0.161 0.361 0.2284 -0.0001 0.0054 0.9946
3 0.286 0.001 0.891 0.001 0.206 0.0000 0.2864 0.0001 0.9999
4 0.389 155.891 0.001 0.176 0.396 0.3888 -0.0003 0.0054 0.9946
5 0.127 126.330 0.001 0.001 0.323 0.1270 -0.0001 0.0000 1.0000
6 0.077 119.256 0.001 0.136 0.303 0.0774 -0.0004 0.0032 0.9968
7 0.618 0.001 0.681 0.001 0.157 0.0000 0.6181 0.0001 0.9999
8 0.537 0.001 0.762 0.001 0.176 0.0000 0.5374 0.0001 0.9999
9 -0.000 0.001 0.001 25.456 0.001 -0.0000 -0.0000 0.9974 0.0026

10 0.240 0.001 1.507 0.001 0.348 0.0000 0.2403 0.0001 0.9999
11 1 66.707 0.237 1.281 0.182 0.7193 0.2807 0.0635 0.9365
12 0.006 106.752 0.001 0.122 0.272 0.0062 -0.0004 0.0053 0.9947
13 0.222 0.001 1.925 0.001 0.444 0.0000 0.2219 0.0000 1.0000
14 -0.001 0.001 0.001 10.984 0.001 0.0000 -0.0014 0.9911 0.0089
15 0.295 127.735 0.001 0.001 0.327 0.2947 -0.0001 0.0001 0.9999
16 0.347 122.726 0.436 2.357 0.336 0.2899 0.0566 0.0668 0.9332
17 0.514 155.511 0.001 0.176 0.396 0.5140 -0.0002 0.0057 0.9943
18 0.215 146.828 0.001 0.166 0.373 0.2148 0.0000 0.0044 0.9956
19 0.412 126.397 0.556 0.001 0.394 0.3183 0.0937 0.0000 1.0000
20 0.297 0.001 1.168 0.001 0.269 0.0000 0.2966 0.0000 1.0000
21 0.684 68.216 0.508 15.009 0.116 0.4380 0.2463 0.4122 0.5878
22 -0.000 0.001 0.001 25.250 0.001 -0.0000 -0.0001 0.9974 0.0026
23 0.793 0.001 1.289 6.883 0.231 0.0000 0.7929 0.1706 0.8294
24 -0.000 0.001 0.001 17.422 0.001 -0.0000 -0.0001 0.9967 0.0033
25 0.888 0.001 0.659 3.518 0.118 0.0000 0.8877 0.1922 0.8078
26 0.695 29.615 0.221 6.516 0.050 0.3973 0.2977 0.3461 0.6539
27 1 193.390 0.001 90.268 0.001 0.9984 0.0016 0.9912 0.0088
28 1 33.048 0.173 40.581 0.001 0.2437 0.7563 0.9697 0.0303
29 0.592 0.001 0.482 2.576 0.086 0.0000 0.5918 0.1306 0.8694
30 0.448 0.001 0.891 0.001 0.206 0.0000 0.4482 0.0001 0.9999
31 0.212 60.499 0.215 1.162 0.165 0.1664 0.0460 0.0581 0.9419
32 0.639 0.001 0.871 4.652 0.156 0.0000 0.6393 0.1463 0.8537
33 0.675 0.001 1.170 0.001 0.270 0.0000 0.6747 0.0000 1.0000
34 0.361 0.001 1.840 0.001 0.424 0.0000 0.3607 0.0000 1.0000
35 1 91.251 0.001 31.662 0.014 0.9996 0.0004 0.9390 0.0610
36 0.773 132.376 0.001 0.150 0.337 0.7735 -0.0003 0.0056 0.9944
37 0.502 55.541 0.414 12.220 0.094 0.2083 0.2940 0.3175 0.6825
38 0.044 0.001 1.170 0.001 0.270 0.0000 0.0439 0.0000 1.0000

Note: Me = Mean, SK = Skewness, SD = Standard deviation, KU = Kurtosis. Values in italics
are approximative.

aFunds with negative scores are those whose mean and skewness are simultaneously
negative.

bu and v are required to be equal to or greater than 0.001 (ε = 0.001).
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Table 3: Local performance

DEA scores Rank Rank

Funds Standarda Partial momentsb Horizonsc Sharpe M-Sharpe
moments Standard Preference Preference

SK & KU Me & SD
(1) (2) (3) (4) (5) (6) (7) (8)
1 1 1 0.52 0.93 0.46 7 7
2 0.23 0.71 0.38 0.69 0.46 18 18
3 0.29 0.83 0.69 0.71 -0.00 33 34
4 0.39 0.66 0.37 0.64 0.19 14 15
5 0.13 0.78 0.36 0.77 0.08 21 20
6 0.08 0.64 0.35 0.58 0.93 29 28
7 0.62 0.86 0.67 0.81 0.21 27 29
8 0.54 1 0.62 1 0.11 25 26
9 0.00 0.72 0.44 0.67 0.22 28 27
10 0.24 0.85 0.36 0.84 0.14 23 23
11 1 1 0.60 1 0.83 5 4
12 0.01 0.68 0.32 0.66 0.24 26 25
13 0.22 0.79 0.38 0.74 -0.00 38 38
14 0.00 0.62 0.21 0.61 1 34 31
15 0.29 0.89 0.45 0.75 0.10 17 17
16 0.35 0.72 0.41 0.70 0.24 16 16
17 0.51 0.80 0.32 0.78 0.63 12 12
18 0.21 0.71 0.39 0.68 0.14 22 21
19 0.41 0.78 0.44 0.76 0.19 15 14
20 0.30 0.85 0.45 0.84 1 19 19
21 0.68 0.75 0.44 0.72 0.70 6 6
22 0.00 0.85 0.31 0.82 -0.00 36 35
23 0.79 0.88 0.37 0.83 0.26 11 11
24 0.00 0.72 0.46 0.70 0.48 37 37
25 0.89 1 0.72 0.97 0.04 20 22
26 0.70 0.72 0.65 0.59 1 4 5
27 1 0.92 0.92 0.81 0.96 2 2
28 1 1 1 1 1 3 1
29 0.59 0.75 0.59 0.66 0.41 9 8
30 0.45 0.89 0.45 0.85 0.35 35 36
31 0.21 0.83 0.43 0.82 0.71 13 13
32 0.64 0.70 0.58 0.66 0.17 30 32
33 0.67 0.94 0.45 0.91 0.26 24 24
34 0.36 0.91 0.44 0.88 -0.00 31 30
35 1 0.76 0.52 0.74 1 1 3
36 0.77 0.84 0.30 0.82 0.37 8 9
37 0.50 0.63 0.58 0.59 0.44 10 10
38 0.04 0.80 0.43 0.76 -0.00 32 33

Rank correlation (Sharpe & M-Sharpe) 0.995

Note: Results are obtained from the CCR input-oriented version with ε = 0.001. Funds with
negative scores are those whose all outputs are simultaneously negative. Me = Mean, SK =
Skewness, SD = Standard deviation, KU = Kurtosis.

aIn the first setting, inputs are standard deviation and kurtosis, outputs are mean and skew-
ness.

bIn the second setting, inputs are composed of lower mean, lower semi standard deviation,
lower skewness and lower kurtosis; outputs contain upper mean, upper semi standard deviation,
upper skewness and upper kurtosis.

cIn the third setting, inputs include the MVAR over the previous year, the 3 previous years
and the 5 previous years; outputs include mean returns over these three periods.
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the Sharpe ratio is based on the mean-variance paradigm while the modified Sharpe ratio

takes account of the skewness and the kurtosis.

Fund rankings according to these two ratios are reported in the columns 7 and 8 of

table 3. Several main observations can be drawn from these results. We can see easily

that despite differences in the approach taken by the two measures, fund rankings are

surprisingly quite similar, both in terms of correlation coefficient (0.995) and in terms of

direct contrasting from fund to fund. Does this strong similarity imply that the return

distribution of all funds is quite close to the normal one? The answer according to the

Shapiro-Wilk normality test is rather negative because the normality assumption is re-

jected in 14 among 38 cases at the confidence level of 95% (see table 1). However, finding

explanations to such problem is beyond the scope of this paper.

Regarding the connection of DEA classifications (except for the third setting) with

Sharpe and M-Sharpe rankings, the results show that most dominant funds are generally

among the seven funds the most highly ranked by Sharpe and M-Sharpe ratios. Nev-

ertheless, funds 8 (dominant once) and 25 (dominant twice) in the second setting are

only placed respectively at the 25th and 20th rank by Sharpe, 26th and 22th by M-Sharpe.

This disfavor is certainly related to the slightly negative mean of fund 28 (-0.18%) and

to the quite low positive mean of fund 25 (0.09%). A closer examination of their return

distributions reveals much wider dispersal of returns and higher frequency of extreme

positive values in these two distributions than in those of other funds ranked before them

by Sharpe and M-Sharpe ratios. It is undoubtedly the reason why these funds are highly

praised by the second setting of DEA. An investor who likes good surprises would find

his interests in these profiles. Yet, if he used only Sharpe and M-Sharpe ratios, he would

have missed his chance, at least in the case of this sample. Such result provides evidence

that DEA can be an efficient supplementary tool to assist investors in selecting correctly

funds satisfying their preferences.

4.3 Assessing hedge fund global performance

4.3.1 Settings

As argued previously, investors may sometimes want to evaluate local performance of

funds (1) on several horizons simultaneously or (2) by using several measures at the same

time. In these cases, how will they reconcile between elementary performances ? On

which basis they can assign a final note to each fund so as to rank them ? This choice is
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particularly difficult when elementary performances provide divergent rankings of funds.

Meanwhile, by means of optimizing the weighted sum of elementary performances, DEA

offers an aggregate measure allowing investors to identify funds having the best combina-

tion of these performances. In other words, by combining multiple performance criteria

simultaneously, DEA provides an exhaustive image of funds. In order to illustrate the

first setting, the M-Sharpe performance ratio over three horizons — the previous year, the

three previous years, the five previous years — are used as elementary performances. In

the second setting, three performance measures which consider the non normal features

of returns are selected, namely modified Stutzer index (Stutzer 2000, Kaplan & Knowles

2001), M-Sharpe ratio and Omega index (Keating & Shadwick 2002). The formulas to

compute the modified Stutzer and the Omega indices are given below:

M-Stutzer = sign(r)
√

2Stutzer with (36)

Stutzer = max
θ

[

− ln
1

T

T

∑
t=1

eθ(rt−r f t)

]

(37)

Omega =

∫ ∞

τ
[1 − F(r)]dr

∫ τ

−∞
F(r)dr

(38)

where rt is fund return on month t, sign(r) is the sign of the mean return, θ is a negative

number, T is the number of monthly returns, r f t is risk-free rate (approximated by the US

3-month T-bill rate) on month t, τ is the MAR pre-determined by investors (approximated

by the US 3-month T-bill rate’s average over the study period). It is necessary to specify

that the modified Stutzer index (hereafter, M-Stutzer) considers up to the skewness of

returns, the M-Sharpe ratio takes into account both the skewness and the kurtosis while

the Omega index regards the whole (empirical) distribution of returns.

These two settings are characterized as having only outputs. Since there are no inputs,

it is possible to assume existence of one input equal to one so that DEA can be applied.

Given this feature, the input-oriented version is required. Besides, investors are also as-

sumed to be indifferent among horizons and performance indicators so that no additional

constraints are needed.

4.3.2 Results

Table 4 reports detailed results of the two settings under consideration. In panel A pre-

senting fund classification over three horizons, empirical results confirm that fund per-

formance varies strongly from one horizon to another. Indeed, coefficients of rank corre-
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Table 4: Global performance

Panel A: Perf. over 3 horizons Panel B: Perf. over 5 years with 3 measures
M-Sh over Global Perf. M-St Ω M-Sh Global Perf.

Funds 5 years 3 years 1 year Rank Score Rank Score
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1 7 21 27 16 0.2028 7 7 7 7 0.657
2 18 17 11 13 0.2854 22 18 18 18 0.430
3 34 26 35 33 -0.0003 33 34 34 34 0.334
4 15 28 28 29 0.0153 24 13 15 13 0.466
5 20 25 36 31 -0.0002 19 21 20 21 0.416
6 28 8 3 6 0.6827 11 29 28 29 0.374
7 29 23 18 22 0.0806 29 30 29 30 0.365
8 26 14 23 27 0.0419 28 28 26 28 0.380
9 27 11 25 24 0.0734 30 26 27 26 0.389
10 23 16 20 25 0.0568 17 23 23 23 0.409
11 4 22 17 12 0.3600 5 5 4 5 0.745
12 25 10 26 21 0.0951 13 25 25 25 0.391
13 38 37 37 37 -0.0005 38 38 38 38 0.260
14 31 6 1 1 1 35 36 31 36 0.310
15 17 24 31 30 0.0034 27 16 17 16 0.450
16 16 29 19 23 0.0749 26 15 16 15 0.459
17 12 27 6 9 0.5109 16 12 12 12 0.494
18 21 35 34 36 -0.0003 18 19 21 19 0.419
19 14 32 30 28 0.0162 25 14 14 14 0.461
20 19 13 2 4 0.9856 21 20 19 20 0.416
21 6 7 8 7 0.5718 6 6 6 6 0.661
22 35 33 32 35 -0.0003 36 33 35 33 0.341
23 11 12 22 20 0.1046 14 11 11 11 0.497
24 37 18 7 11 0.4276 37 37 37 37 0.278
25 22 31 29 32 -0.0002 20 24 22 24 0.408
26 5 1 4 1 1 4 4 5 4 0.877
27 2 5 13 8 0.5565 1 2 2 1 1
28 1 3 9 1 1 3 3 1 1 1
29 8 15 16 15 0.2217 9 9 8 9 0.530
30 36 20 14 17 0.1691 34 35 36 35 0.318
31 13 4 10 10 0.4409 23 17 13 17 0.438
32 32 36 21 26 0.0504 10 31 32 31 0.358
33 24 34 15 18 0.1415 15 22 24 22 0.409
34 30 38 38 38 -0.0006 31 27 30 27 0.382
35 3 2 5 5 0.8112 2 1 3 1 1
36 9 19 24 19 0.1411 8 8 9 8 0.568
37 10 9 12 14 0.2675 12 10 10 10 0.500
38 33 30 33 34 -0.0003 32 32 33 32 0.355
Correlation

M-Sh 3 years 0.71
M-Sh 5 years 0.49 0.34 0.82 0.99

Ω 0.82

Note: M-Sh = modified Sharpe ratio, M-St = modified Stutzer index, Ω = Omega index. Funds with
negative scores are those whose elementary performances are all negative.
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lation between classifications are rather weak: 0.49 (5 years versus 3 years), 0.34 (5 years

versus 1 year) and 0.71 (1 year versus 3 years). The most striking example is fund 14 clas-

sified at the 31th position over five-year horizon but at 6th and 1th ranks over respectively

three-year and one-year horizons. According to DEA, this fund is classified as dominant

with an aggregate score of 1. In detail, it is found to have the performance over one-year

horizon not only classified at the 1st rank but also sufficiently high to compensate for the

slightly negative performance over five-year horizon so as to arrive finally at the head

of the sample. Unlike fund 14, two other dominant funds according to the DEA global

performance score — funds 26 and 28 — have very stable performance profiles over time.

With regard to fund rankings according to the three selected performance indicators

(Panel B), contrary to the preceding case, classifications are overall very coherent between

them. This coherence is confirmed by high coefficients of rank correlation: 0.99 (M-Sharpe

with Omega), 0.82 (M-Sharpe with M-Stutzer) and 0.82 (Omega with M-Stutzer). Such

finding certainly does not provide an ideal illustration of the problem which this study

aims to illustrate here. Nevertheless, in detail, rankings given by the M-Stutzer index

and those provided by the M-Sharpe ratio and the Omega index are quite divergent on

several occasions. It is particularly true for fund 6 which is ranked at the 11th place by

the M-Stutzer index but ranked only at the 29th and the 28th places in the classification

of respectively the Omega index and the M-Sharpe ratio. The other examples are funds

4, 10, 12, 15, 16, 19 and 32. In such cases, applying DEA to determine definitive ranks of

these funds presents an undeniable interest.

Finally, three funds globally qualified as dominant are funds 27, 28 and 35. All of

them are the most highly ranked of the sample, no matter what measure is used. In

these cases, the dominance of these funds is obvious, DEA can only confirm it. Only

when performance measures disagree on fund rankings that DEA proves its perspicacity

by providing for each fund an aggregate indicator of performance allowing a global and

definitive classification. Such is the case of funds 14, 18, 22, 25, 31, 33 and 34. Consider

for example fund 25. It is ranked 20th by the M-Stutzer index, 24th by the Omega index

and 22th by the M-Sharpe ratio. However, according to DEA, it is globally placed only

24th when all three performance indicators are considered. Similarly, fund 34 is at the

31th position of the list according to M-Stutzer, 27th according to Omega, 30th according

to M-Sharpe but globally ranked 27th by DEA.

30



Conclusion

Previous studies documented that DEA could be a good tool to solve decision-making

problems with multiple criteria, including investment fund performance evaluating task.

This paper shows that DEA is particularly adapted to assess hedge fund performance

for the following reasons. First, it can incorporate multiple risk-return attributes of non

normal returns in an unique aggregate score so as to rank funds. Hence, DEA can be

used to evaluate local and global performances of hedge funds. The local performance

is obtained when evaluation criteria include risks, eventually sales loads (DEA’s inputs)

and returns (DEA’s outputs). The global performance is defined as the aggregate score

of several elementary performances which could be performances over several temporal

horizons, or performances over one temporal horizon but measured by different indica-

tors. Second, unlike other performance measures, DEA offers investors the possibility to

exert direct control on the importance level paid to each evaluation criteria. Thus, each in-

vestor can tailor his own performance measure to select funds corresponding the most to

his own preferences. This flexibility is very important as in reality, each investor usually

has his own preferences and constraints. Third, by putting emphasis on the best observed

funds, DEA makes no assumption on the functional relation between evaluation criteria.

To this end, this paper focuses on the most important methodological issues concern-

ing the application of the basic CCR model to hedge fund performance appraisal, namely

(1) the choice of evaluation criteria as DEA’s inputs and outputs, (2) the choice between

input-oriented or output-oriented version of the CCR model, (3) dealing with negative

inputs and outputs, and (4) transcribing investors’ specific preferences into mathemati-

cal constraints. These elements are presented in such a way to provide investors with

a general framework to apply DEA in assessing fund performance. In order to make

these guidelines more intuitive, several numerical illustrations with thorough discussion

of results are provided on a sample of 38 hedge funds. The illustrations also highlight

the importance of correct specification of evaluation criteria and preference structure for

efficient application of DEA. A comparison between DEA classification and rankings pro-

vided by traditional Sharpe and modified Sharpe ratios indicates that they are sometimes

radically inconsistent. Further examination of funds’ return distributions suggests that

these latter two measures might not price properly good surprises (extremely high posi-

tive returns). In such case, DEA proves to be a good supplement to improve the precision

of selection tasks. Although this paper only addresses the application of DEA in the

hedge fund context, its guidelines are also applicable to other types of investment funds

like mutual funds, pension funds or ethical funds, etc.
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Like any other tools, DEA also has its caveats. One of the main weaknesses arises

from the fact that DEA basic models do not provide complete rankings of dominant

funds. Nevertheless, this weakness can be mitigated by either adding more restrictive

preferences (additional mathematical constraints) so that the short list becomes more and

more selective, or applying other qualitative and quantitative criteria on dominant funds

so as to rank them. Besides, the dominance or efficiency of funds is only relative to the

other funds in the sample and thus can be changed once the sample is modified. However,

relative evaluation is a well-established concept in economic literature (Holmstrom 1982).

In addition, the relative property of fund evaluation is still quite valuable because in the

investment industry, funds are often rated relatively to others in the same category. A

broad literature documented that the investment fund market is a tournament and the

managers compete against each other in the same category to attract investors (Brown et

al. 1996, Agarwal et al. 2003, Kristiansen 2005).

References

Agarwal, V., Daniel, N. D. & Naik, N. Y. (2003), Flows, performance, and managerial
incentives in the hedge fund industry, Working paper.

Andersen, P. & Petersen, N. (1993), ‘A procedure for ranking efficient units in data envel-
opment analysis’, Management Science 39(10), 1261–1294.

Arditti, F. (1967), ‘Risk and the required return on equity’, Journal of Finance.

Basso, A. & Funari, S. (2001), ‘A data envelopment analysis approach to measure the
mutual fund performance’, European Journal of Operational Research 135(3), 477–492.

Basso, A. & Funari, S. (2003), ‘Measuring the performance of ethical mutual funds: A
DEA approach’, Journal of the Operational Research Society 54(5), 521–531.

Broihanne, M.-H., Merli, M. & Roger, P. (2004), Finance Comportementale, Gestion, Eco-
nomica.

Brown, K. C., Harlow, W. V. & Starks, L. T. (1996), ‘Of tournaments and temptations:
An analysis of managerial incentives in the mutual fund industry’, Journal of Finance
51(1), 85–110.

Charnes, A. & Cooper, W. (1962), ‘Programming with linear fractional functionals’, Naval
Research Logistics Quarterly 9(3, 4), 181–185.

Charnes, A. & Cooper, W. (1973), ‘An explicit general solution in linear fractional pro-
gramming’, Naval Research Logistics Quarterly.

Charnes, A., Cooper, W. & Rhodes, E. (1978), ‘Measuring the efficiency of decision-making
units’, European Journal of Operational Research 2, 429–444.

32



Choi, Y. K. & Murthi, B. P. S. (2001), ‘Relative performance evaluation of mutual funds: A
non-parametric approach’, Journal of Business Finance & Accounting 28(7/8), 853.

Cooper, W. W., Seiford, L. M. & Tone, K. (2000), Data Envelopment Analysis - A Comprehen-
sive Text with Models, Applications, References and DEA-Solver Software, Kluwer Academic
Publishers.

Farrell, M. (1957), ‘The measurement of productive efficiency’, Journal of the Royal Statisti-
cal Society 120(3), 253–281.

Favre, L. & Galeano, J.-A. (2002), ‘Mean-modified value-at-risk optimization with hedge
funds’, Journal of Alternative Investments 5(2), 21–25.

Francis, J. C. & Archer, S. H. (1979), Portfolio Analysis, Foundation of Finance, Prentice -
Hall.

Fried, H. O., Lovell, C. K. & Schmidt, S. S. (1993), The measurement of productive efficiency:
Techniques and Applications, Oxford University Press.

Gregoriou, G. N. (2003), ‘Performance appraisal of funds of hedge funds using data en-
velopment analysis’, Journal of Wealth Management 5, 88–95.

Gregoriou, G. N. & Gueyie, J.-P. (2003), ‘Risk-adjusted performance of funds of hedge
funds using a modified Sharpe ratio.’, Journal of Wealth Management 6(3), 77–83.

Gregoriou, G. N., Sedzro, K. & Zhu, J. (2005), ‘Hedge fund performance appraisal using
data envelopment analysis’, European Journal of Operational Research 164(2), 555.

Holmstrom, B. (1982), ‘Moral hazard in teams’, Bell Journal of Economics 13(2), 324–340.

Jean, W. H. (1971), ‘The extension of portfolio analysis to three or more parameters’,
Journal of Financial & Quantitative Analysis.

Kane, A. (1982), ‘Skewness preference and portfolio choice’, Journal of Financial & Quanti-
tative Analysis 17(1), 15–25.

Kaplan, P. & Knowles, J. (2001), The Stutzer performance index: Summary of rationale,
mathematics and behaviour, Technical report, Morningstar.

Keating, C. & Shadwick, W. (2002), ‘A universal performance measure’, Journal of Perfor-
mance Measurement 8(3), 59–84.

Kooli, M., Morin, F. & Sedzro, K. (2005), Evaluation des mesures de performance des
hedge funds, Communication at International Conference of the French Association of
Finance, Paris, June 2005.

Kraus, A. & Litzenberger, R. (1976), ‘Skewness preference and valuation of risk assets’,
Journal of Finance.

Kristiansen, E. (2005), Agency, performance, and selection: the market for fund managers,
Working paper.

McMullen, P. R. & Strong, R. A. (1998), ‘Selection of mutual funds using data envelopment
analysis’, Journal of Business & Economic Studies 4(1), 1.

33



Morey, M. R. & Morey, R. C. (1999), ‘Mutual fund performance appraisals: a multi-horizon
perspective with endogenous benchmarking’, Omega, The international journal of manage-
ment science 27(2), 241–258.

Murthi, B. P. S., Choi, Y. K. & Desai, P. (1997), ‘Efficiency of mutual funds and portfolio
performance measurement: A non-parametric approach’, European Journal of Operational
Research 98(2), 408.

Powers, J. & McMullen, P. (2000), ‘Using data envelopment analysis to select efficient
large market cap securities’, Journal of Business and Management 7(2), 31–42.

Scott, R. C. & Horvath, P. A. (1980), ‘On the direction of preference for moments of higher
order than the variance’, Journal of Finance 35(4), 915–919.

Seiford, L. & Zhu, J. (1999), ‘Infeasibility of super-efficiency data envelopment analysis’,
INFOR 37(2), 174–187.

Seiford, L. M., Cooper, W. W. & Zhu, J. (2004), Handbook on Data Envelopment Analysis,
Kluwer Academic Publisher.

Sengupta, J. K. (2003), ‘Efficiency tests for mutual fund portfolios’, Applied Financial Eco-
nomics 13, 869–876.

Sexton, T., Silkman, R. & Hogan, A. (1986), Data envelopment analysis: Critique and
extensions, in R. Silkman, ed., ‘Measuring Efficiency: An Assessment of Data Envelop-
ment Analysis’, Jossey-Bass, San Francisco, CA, pp. 73–105.

Sharpe, W. (1966), ‘Mutual fund performance’, Journal of Business pp. 119–138.

Stutzer, M. (2000), ‘Portfolio performance index’, Financial Analysts Journal pp. 52–61.

Tarim, S. A. & Karan, M. B. (2001), ‘Investment fund performance measurement using
weight-restricted data envelopment analysis’, Russian and East European Finance and
Trade 37(5), 64–85.

Thompson, R., Singleton, F., Thrall, R. & Smith, B. (1986), ‘Comparative site evaluations
for locating a high-energy physics lab in Texas’, Interfaces 16(6), 35–49.

Tone, K. (1999), ‘A consensus making method for group decisions’, Proposal at the Com-
mittee Meeting, National Land Agency.

Zhu, J. (1996), ‘Robustness of the efficient DMUs in data envelopment analysis’, European
Journal of Operational Research 90, 451–460.

34


