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ABSTRACT

There have been numerous works on the yield curve of government bonds in various countries. For developing markets, the results are however often influenced by varying liquidities among issues. We apply a liquidity weighted method to account for the yield spreads. Employing the concept of expected future liquidity as outlined in Goldreidch, Hank and Nath (2005), we obtain results consistent with previous literatures. With weighted objective functions introduced in Vaidyanathan, Dutta and Basu (2005) and also specifically considering market characteristics in Taiwan, our estimations are able to explain current phenomenon of the government bond market. In light of issues raised in Diebold and Li (2006), we have also explored time series behavior of fitted price errors. Our evidences indicate that trading liquidity carries information effect in the long run, which cannot be fully captured in the short run. Trading liquidity plays a key role in helping long run term structure fitting. Compared with previous studies in this area, our results provide a robust and realistic characterization of the sport rate term structure over time and hence help long run pricing of financial instruments greatly.
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I. Introduction

Estimating the term structure in Taiwan has been a crucial task with the increase in the liquidity of government bond market and the introduction of interest rate futures and other fixed income derivatives. While both the Cubic Spline and the Nelson-Siegel-Svensson methods are widely used, almost none take good account of the illiquidity and other frictions in the market, and hence the error is potentially high. The standard deviation of the error of 10 to 20 basis points regularly and sometimes at 20 to 30 basis points is just practically unacceptable. One obvious friction is that a much of the trading is on just a few bonds, perceived as being liquid. As prices have been literally been adjusted to reflect the liquidity of each issue, the estimation of the term structure cannot clearly do without it. Besides, most of the studies in this market focus on the no-arbitrage models rooted from Hull and White (1990) and Heath, Jarrow and Morton (1992) in comparing bonds across maturities. The application of the equilibrium models of Vasicek (1977), Cox, Ingersoll and Ross (1985), and Duffie and Kan (1996).have been, however, a lesser concern. To the extent that they focus on the dynamics of the instantaneous rate with affine models and therefore the risk premium, the term structure for the market in the long run is equally important. 


By extending the work of Subramanian (2001), Vaidyanathan, Dutta and Basu (2005) adopted a more comprehensive and robust framework to incorporate liquidity in the term structure estimation process, specifically addressing the distortion effect of bonds traded illiquidly during a day. Goldreidch, Hank and Nath (2005) has proposed a liquidity measure specifically appropriate for fixed income securities, taking into account the concept of expected future liquidity. Results from these new methodologies and measurements have provided important implications to the practical issues of estimating term structure especially in a market with substantially uneven trading liquidity among government bond issues. In addition, as interest rate forecasting is important for portfolio management, derivatives pricing and risk management, one would need to resolve problems of yield curve forecasting.  The no-arbitrage models in essence say little about forecasting, as the term structure is fit at one point in time. In dealing with dynamics driven by the short rate, the affine equilibrium term structure is much more relevant to forecasting. De Jong (2000) and Dai and Singleton (2000) focus on in-sample fit as opposed to out-of-sample forecasting. Duffee (2002), with out-of-sample forecasting, was not able to report satisfactory forecasting results.


In this paper, on the one hand we apply to the Taiwanese government bonds the new method and definition of in the liquidity-based term structure estimation, while on the other hand we take an explicitly out-of-sample forecasting perspective, and the Nelson-Siegel (1987) exponential components framework to parameterize the three parameters as crucial factors. As the Nelson-Siegel framework imposes structure on the factor loadings, following the concepts of Diebold and Li (2006) we can forecast the yield curve by forecasting the factors in the local riskless term structure. The forecasts are not only crucial in examining the performance of our fitted yield curves and factors, but they are used to corroborate our characterization of the liquidity distribution among various issues. Moreover, the forecasts serve as an important alternative to other ordinary benchmarks.

This paper is organized as follows. In Section 2 we provide a detailed description of our modeling framework, which outlines the definition of liquidity and term structure. Section 3 proceeds with out-of sample forecasting analysis considering time-varying parameters, and the interpretation it provides to market phenomenon and subsequent development. In section 4, comparisons on results from alternative methods are made and implications are drawn. Section 5 gives concluding remarks and recommendations, as well as discussions of related issues and further research direction.
2.  Liquidity and Term Structure
Trading of the government bonds in Taiwan has been characterized by lack of ample number of issues on the one hand, and uneven liquidity distribution across issues on the other. Although there is a dealers’ over-the-counter market, there is also a centralized trade-matching system launched several years ago. The volume traded on the centralized system started low as a percentage of totals, but has accounted for almost ninety percent as of February 2006. However, trading is extremely concentrated on the on-the-run 10-year issue, which normally constitutes more than ninety percent of the daily trading volume. With this drastic unevenness of liquidity distribution, the estimation of a sport rate term structure cannot be satisfactory without seriously considering the effect of liquidity. Literatures focusing on the more developed market have not widely discussed this issue. As Amihud and Mendleson (1991) have argued, more liquid issues are traded with lower yield. Longstaff (2004) has also demonstrated that the liquidity premium could be as high as 15%. Therefore, it is crucial to incorporate the effect of liquidity in fitting the term structure of spot rates in the Taiwanese fixed income market. Studies of on this market have not made formal treatment in fitting the yield curve although some consideration of liquidity measures has been noted.
We intend to follow the works of Subramanian (2001) and Vaidyanathan, Dutta and Basu (2005) to fit the Taiwanese term structure with a liquidity-weighted optimization process. Their liquidity measure employed are however daily volume and trades due to data limitation. In this study we have used intra-day trading liquidity measures to emulate market depth in capturing the liquidity effect in a more realistic sense. Specifically, we have considered the expected future liquidity concept proposed by Goldreidch, Hank and Nath (2005) as it is unique for fixed income securities. Average quote spread and effective quote spread are reported as the two most prominent liquidity measures for treasuries. Fleming (2003) has also reported that the intra-day measures such as bid-ask spreads are better in tracking the liquidity of treasury issues than quote and trade size. 
Various functional forms used for fitting yield curves applied the Weierstrass theorem of polynomial approximation. McCulloch (1971) method started the spline approximation method which requires the specification of a basis function. The discount function, as a linear combination of basis functions, should possess certain properties such as being positive, monotonically non-decreasing and equal to unity at issuance of a bond. McCulloch (1971) uses quadratic splines, which leads to oscillations in forward rate curves. A cubic spline method was proposed in McCulloch (1975) which does not constrain the discount function to be non- increasing; however, the forward rates may turn out to be negative. Mastronikola (1991) suggests a more complex cubic spline wherein the first and second derivatives of the adjoining functions are constrained to be equal at the knot points. Cubic splines can produce unstable estimates of forward rates. In order to avoid the problem of improbable looking forward curves with cubic splines, a method that uses exponential splines to produce an asymptotically flat forward rate curve is used. There are important concerns regarding the choice of basis functions as suggested by McCulloch (1975). Use of B-splines as a solution is advocated. These are functions that are identically zero over a large portion of the approximation space and prevent the loss of accuracy because of cancellation. Steeley (1991) suggests the use of B-splines, which he shows to be more convenient and an alternative to the much-involved Bernstein (1926) polynomials. Eom, Subrahmanyam, and Uno (1998) use B-splines successfully to model the tax and coupon effects in the Japanese bond market.

With the problems of unbounded forward rates with spline methods, Nelson and Siegel (1987) applied exponential polynomial to smoothing the forward rate and Svensson (1995) proposed an extension to include a second hump. Bliss (1997) has proposed estimating the Nelson and Siegel model using a non-linear, constrained optimization procedure that accounts for the bid and ask prices of bonds as well. Adams and Van Deventer (1994) stressed maximum smoothness for forward rates in fitting yield curves.

The spline method and the Nelson-Siegel-Svennson model forms two ends in the emphasis of  accuracy and smoothness respectively. Fisher, Nychka, and Zervos (1995) propose using a cubic spline with roughness penalty to extract the forward rate curve which allows weights to be attached to each. Varying this weight decides the extent of the trade-off required. The roughness penalty is chosen by a generalized cross- validation method to regulate the trade-off and it performs better than original spline model in the medium and long bonds but excessive smoothing on the short side. According to Bliss (1997), the method of Fisher et al. (1995) tends to mis-price short maturity securities. This is because it attaches the same penalty across maturities. Waggoner (1997) proposes using a variable roughness penalty for different maturities called the VRP (Variable Roughness Penalty) method. This method provides better results than that of Fisher on the short side and performs as well on the medium and long bonds.

In less developed markets, functional forms need certain modifications. We adopt the optimization function of Vaidyanathan, Dutta and Basu (2005) to incorporate the effect of liquidity in the  estimation procedure. In addition to parameter estimation which minimizes the mean squared errors between the observed and calculated prices, the mean absolute deviations are also minimized. Weighted least squares and weighted mean absolute deviation are also used for comparison. Weights are based on intra-day liquidity measures instead of from daily observations.
Objective Functions

In order for the term structure to identify pricing errors, using a squared error criterion tends to amplify pricing errors since large error terms from the presence of liquidity premiums contribute more to the objective function than to the errors on liquid securities. Liquid securities have narrower bid-ask spreads compared to illiquid ones. In an illiquid market like Taiwan, we expect illiquid securities to be priced more inaccurately by a model that ignores liquidity premiums and the pricing errors to be larger on illiquid securities than on the more liquid ones. Errors are caused during curve fitting and also from liquidity premium. Errors from curve fitting should be avoided, while those arising from liquidity premium as a reflection of market condition should not be ignored. Assigning weights based on appropriate measure of liquidity would lead to better estimation than using equal weights. 

A reciprocal of the bid-ask spread is an ideal liquidity function, in addition the volume of trade and the number of trades are good candidates too. The objective functions have two variations, where one is minimizing the mean squared errors while the other minimizes mean absolute deviations. They are characterized by
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are actual and fitted bond prices respectively. The weights wi in (1) and (2) are defined by
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where vi and si are daily trading volume and average spread or the ith security respectively, while vmax and smax are the maximum volume of trades and the maximum number of trades among all the securities traded for the day respectively. The adoption of the hyperbolic tangent function to incorporate asymptotic behaviour in the liquidity function. The relatively liquid securities would have vi/vmax and ni/nmax close to 1 and hence the weights of liquid securities would not be significantly different. However, the weights would fall at a fast rate as liquidity decreases.

Beside the liquidity weights defined in (3), we have also considered the following alternative ones to match the reality of the Taiwanese government bond market. As the 10-year on-the-run issues often trade at around 80% to 90% of the market volume, the adjustment of (3) may not be able to restore the liquidity premium accurately. So we also look at the following four other definitions to identify one that can maintain stability of the curve while adjusting the premium reasonably.  
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The adoption of only the trading volume, without using the bid-ask spread measure is an attempt to minimize the dominance of the 10-year on-the-run issue. Overtime, the measure of trading has been a stable on in the market compared to the spread measure.
B-splines Model
The B-spline model use the following pricing function
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where
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are coupon payments and the B-spline function
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is defined as suggested in Steeley (1991),
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where j is the number of control points and p is the order of the spline.
Nelson-Siegel-Svensson (NSS) Model
The Nelson, Siegel, and Svensson (NSS) model derives the forward rate in a functional form and determines the discount function from it to avoid oscillations in the forward rate. This method has the advantage of estimating lesser number of parameters and ensures a smooth forward curve. The instantaneous forward rate function, f(t), is modeled as follow
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where t is the time to maturity of a bond. β0 is positive and is the asymptotic value of f(t). β1 determines the starting value of the curve in terms of deviation from the asymptote. It also defines the basic speed with which the curve tends towards its long-term trend. τ1 must be positive and specifies the position of the first hump or the U-shape on the curve. β2 decides the magnitude and direction of the hump. If this is positive, a hump occurs at τI whereas if it is negative, the U-shape occurs at τI. τ2 must also be positive and defines the position of the second hump or the U-shape on the curve. β3, like β2, determines the magnitude and direction of the hump.

The spot rate function can be derived as
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and the discount function under this model can be obtained with

[image: image21.wmf])

100

)

(

exp(

)

(

t

t

R

t

D

´

-

=


hence bond prices
[image: image22.wmf]i

B

through (4). The objective function (1) or (2) then applies.


The estimation of the NSS model involves nonlinear procedures and the initial values for the usual Gauss-Newton method provide local solutions only. Bolder and Streliski (1999) reported a method using 256 zoned initial values. We apply the Continuous Hybrid Algorithm (CHA) proposed byp Chelouah and Siarry (2003) to obtain the optimal global solution. The CHA method identifies feasible zones first with the Continuous Genetic Algorithm (CGA) in a global zone search, and then locate the optimal solutions in the neighboring zones around the feasible zones with a Nelder-Mead simplex method. Although the CHA method provides satisfactory search result for models with 10 or fewer parameters, the NSS presents certain difficulty due to the inherent parameter restrictions. So we adopt the Bank of Canada concept and impose certain assumptions on β0, β1, β2 and β3.
1. The value of
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v
Variable Roughness Penalty (VRP)
The VRP or smoothing splines approach used in this study is the one from Waggoner (1997), an extension of the splines approach suggested by McCulloch (1971) and Fisher, Nychka and Zervos (1995). The objective function with VRP has the form
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where λt is the smoothing parameter and has the following distribution,
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The first term in (12) represents the goodness of fit while the second term is the roughness penalty. As cubic splines generate oscillations in the forward rate term structure, an unacceptable behavior, the curvature is penalized accordingly in the optimization under (12). The penalty is smaller in the short end as the forward curve is less oscillating for the shorter maturity. In the long maturity segment, the penalty is the highest. The objective function takes the form of a non-linear regression. Our estimation adopt the estimates from the original B-spline model as the initial values of the VRP model and then obtain parameters with the Gauss-Newton method.
3
Forecasting Term Structure
The forecasting performance of the term structure is based on the work of Diebold and Li (2006), which adopted the Nelson-Siegel (1987) model and showed that the three coefficients in the Nelson-Siegel curve may be interpreted as latent level, slope and curvature factors. They also argued that the Nelson-Siegel model coefficients are ideal to be interpreted as factor loadings and are consistent with various empirical properties of the yield curve. Their interpretation of the Nelson-Siegel model as a three-factor model of level, slope and curvature allows the contrast to various multi-factor models that have appeared in the literature.


In this study we attempt to address the time series properties of our fitted bond prices. The forecasting capability of models we use can be of great interest since the long run properties of the fitting model can be evaluated. We compare results from liquidity-weighted optimization from that of an unweighted one. Regardless of the weighting scheme, price errors exhibit significant first order autocorrelation. The persistence for the weighted model is strong enough to make price errors generated form it become non-stationary from the test of the existence of a unit root in the time series. With the dominating trading volume of the 10-year issues, we further observe the informational content of them in influencing the concurrent 2- and 5-year on-the-run issues. Price errors from the liquidity-weighted B-Spline model for the shorter maturity on-the-run issues are significantly positively related to those for the 10-year issues, whether they are on- or off-the-run. As the major issues from 2, 5 and 10 year maturity are potentially closely related in the trading on the market, we further conduct a cointegration analysis to explore a common factor that drive the prices of these issues. The most actively traded 10-year issues appear to be the stabilizing factor that removes the long term non-stationarity of the error time series. A reasonable interpretation of the phenomenon is the trading liquidity behind issues of various maturities on the market.
4
Data and Estimation Results
Our data is obtained from the the Electronic Bond Trading System (EBTS) of Gretai Securites Market in Taipei from January 1, 2003 to September 30, 2005. We set the first two years of the data period as the in-sample interval to conduct parameter estimation for both models. The last 9 month is uses as an out-of-sample forecasting period. For the validity and stability of the sample, prices of the 30-year bond and when-issue data are excluded. So our term structure fits only up to 20 years the spot rates of the Taiwanese market.
With the in-sample data the curve was fitted by optimizing on the mean squared error and mean absolute error between the observed prices and calculated prices. Our focus is on the comparison of the out-of-sample fitting performance among the three models of B-Spline, B-Spline with Liquidity and the NSS with Liquidity. We calculate the Root Mean Squared Errors (RMSE) and their standard deviations in both the in-sample and out-of-sample periods. Table 1 outlines the basic comparison results.The B-Spline method with liquidity weights performs the best in both periods. Not only the means of RMSE are smaller, the standard deviation of RMSE in the out-of-sample period indicates its superiority. In terms of liquidity weighted estimation, our results are different from that of Vaidyanathan, Dutta and Basu (2005), which identified the NSS-Liquidity model as the most stable one. However, as argued in Bliss (1996), the length of fitting period seemed to affect the comparison of performance among models. There he found that the Smoothed Fama-Bliss method performs better in the short run, while the McCulloch Cubic Spline works better in the long run. To the extent that the combination of issues of various long and short term influence the fitting result, our findings in Table 1 exemplifies a working model for the short term. 
To examine if the results in Table 1 is reliable under the usual sense, we have conducted the Kolmogorov-Smirnov normality test on RMSE of the three models. Test results in Table 2 suggest no significant evidence of rejecting the normality assumption. To find out if there are significant differences between the averages of RMSE computed for each of the three models from the in-sample fitting and the out-of-sample application, we have used a t-test to examine it. The insignificant test statistics reported in Table 3 indicate that the liquidity-weighted fitting of the yield curve does not generate large fitting errors in out-of-sample forecasting. Table 4 proceeds with model comparison with the Friedman’s nonparametric test. With both the in-sample and out-of-sample re-ranking tests, B-Spline-Liquidity still performs the best, while the B-Spline-Liquidity-VRP stands as second and the NSS-Liquidity is the least preferable. As the combination of issues traded has almost not changed in the 4-month sampling period, our model comparison is free of the problem arising from the issue brought up by Bliss (1996).
The fitted curves with the three models are presented on Figure 1 for June 21, 2005. The on-the-run 10-year issue was traded with a volume accounting for 32.13% of the market, a relatively low one in percentage. With the incorporation of liquidity during optimization and a lesser uneven liquidity distribution on the day, the fitted curves are less oscillating. The fitted parameters are reported in Table 5. Another out-of-sample fitting is plotted on Figure 2, where more pronounced fluctuation is observed. Results from alternative liquidity definition are plotted on Figure 3. The curve fitted with the square root of trading volume appears to perform reasonably well. Although the B-Spline-Liquidity model has been identified as the best in performance, it exhibits the most oscillation among the three. The curvature is potentially related to the fact that the on-the-run 10-year issue was trading at a dominating volume of 91.60% of total market. So the yield curve has a dip on the 10-year maturity. The fitted value there is lower than the actually traded 10-year yield by 16 b.p., which causes the two humps from optimization under the B-Spline-Liquidity model. The NSS-Liquidity, however, provides a more moderate curve compared with the other two. The parameter fitted for this out-of-sample day is presented in Table 6. It is worth noting that the 
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parameter, the yield for perpetuity, is at 3.06, a 14 b.p. above the in-sample result in Table 5.

Table 7 presents basic statistics for price errors by subtracting the traded from the fitted price, unweighted and liquidity-weighted, from fitting the B-Spline models on 11 major issues of three maturities starting from January 2, 2003. For each issue, from it’s issuance date we construct the price errors, when available, up to 6 months. Regardless of the liquidity adjustment, the unweighted price errors indicate that B-Spline fitting to some extent has removed certain liquidity premium from the most active 10-year issues due to the averaging effect of the fitting process. It is clear that the effect of liquidity adjustment depresses the fitted price for the 10-year issues more than the 2- and 5-year issues when we examine the liquidity-weighted price errors. It appears also true that as market trading develops, the more recent issues with a given maturity are with smaller price errors relatively, especially on the 10-year ones.

The time series properties of the price errors are examined in Table 8. All the error series exhibit significant autocorrelation on the first order, but not on the second. Only the unweighted fitted results are reported, as the liquidity-weighted regressions produce similar but even stronger time series patterns. The more actively traded 10-year issues have generally larger coefficients as compared with the less liquid issues. Across all three maturities, the more recent issues seem to have more persistent fitting errors than the earlier ones. The short term persistence of the fitting errors may indicate that the model employed have not captured movements of market yields over time. Part of the traded yield level in a given day reflects not only current market demand and supply, but also certain anticipation of subsequent yield movements. If the fitting is inaccurately modeled, we would have seen negative autocorrelation as a correction. Further results from the model with an added control variable are reported on the bottom panel of Table 8. As an informational reference, for each issue we add in the fitted price errors of a concurrently traded on-the-run 10-year issue. Errors for the 2- and 5-year issues are consistently influenced by those from the 10-year ones, indicating the information contained in the dominantly traded issue provide strong information for the trading direction of the less liquid ones
. With the addition of this control variable, we see the anticipated result of smaller autocorrelation coefficients. They are, however, still significant enough to demonstrate the dynamic effect. The control variable, on the other hand, is an evidence of a contemporary effect.

As the fitted price errors from the liquidity-weighted models are more strongly autocorrelated, we have conducted unit root tests to verify stationarity. Evidences suggest a significant non-stationarity is present in the liquidity-weighted series, but not in the unweighted ones. We therefore proceed with a cointegration analysis on a group of 5 time series including the three most recent 10-year issues and the most recent 2- and 5-year issues. In light of the informational effect found in Table 8, it is reasonable to expect certain cointegration mechanism to remove the non-stationarity of some of the liquidity-weghted price error series. Results reported in Table 9 suggest significantly that the 10-year error series, not those from issues of shorter maturities, are the factors restoring the system to long term stationarity. Relative to the most recent 2- and 5-year on-the-run isssues, coefficients for all the most recent three 10-year issues are significant within the cointegrating vector. The more recent 10-year on-the-run issues appear to be more significantly the variables in bringing the system to cointegration. So the dominant liquidity behind the 10-year on-the-runs can be considered as one factor that drives the government bond market to certain long run equilibrium.

5.  Conclusions
In a government bond market where the number of liquid bonds is quite small, term structure estimation needs to model the liquidity in individual bonds. We find that a liquidity function based on average quoted spread and the total volume models the liquidity fairly well. Estimation using this weighted objective function ensures that liquid bonds in the market are priced efficiently. For modeling the liquidity of individual issues, we find the hyperbolic tangent function to be a better approximation than the exponential function. The incorporation of liquidity improves substantially the performance of fitting with our data. We have compared the performance of three different models. The B-Spline model with liquidity weighting adjustment performs the best in terms of efficiency and stability. The fitted curve from the Nelson-Siegel-Svensson model with liquidity weights seems to provide a more stable one especially on the short end. We have also addressed in this study the importance of trading liquidity on fitting yield curves in a market with uneven liquidity across issues. 
Liquidity not only affects pricing errors in fitting yield curves cross-sectionally, it also does it along the time series direction. In addition to the cross-sectional analysis in comparing fitting results with and without liquidity-weighted optimization, we take fitted price errors of given issues and observe their time series properties. The results suggest that there are needs to incorporate time-series-wise adjustment as the fitted prices errors are autocorrelated. Cointegration analysis performed on a group of most recent on-the-run issues indicated that the most active 10-year issues are the ones that restoring the system to stationarity. The government bond market is driven by the trading liquidity factor to allocate prices for issues of different maturities according to the relative liquidity distribution of each issue at a given time.
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Table 1: Fitting errors for various models

Root Mean Squared Errors (RMSE) between prices from fitted yields and the actual prices are computed for the three models in interest.
Model
In-Sample 
Out-Of-Sample


RMSE-Mean
RMSE- S. E. 
RMSE-Mean
RMSE-S. E.
NSS with Liquidity
1.15
0.22
1.19
0.15

B-Spline with Liquidity
1.07
0.20
1.10
0.10
B-Spline with Liquidity and VRP
1.12
0.21
1.17
0.14

Table 2: Kolmogorov-Smirnov Normality Test
Root Mean Squared Errors (RMSE) between prices from fitted yields and the actual prices are computed for the three models in interest.

Model
In-Sample 
Out-Of-Sample

NSS with Liquidity
0.1141
0.0840

B-Spline with Liquidity
0.1089
0.1054

B-Spline with Liquidity and VRP
0.1551
0.1143


Table 3: Test of In- and Out-Of-Sample RMSE Difference 
Out-of-sample RMSE’ are subtracted from the in-sample ones and Root Mean Squared Errors are computed and a t-test is applied to determine the difference.

Model
t-value 
d.f.
NSS with Liquidity
-0.7211
83

B-Spline with Liquidity
-0.6246
83

B-Spline with Liquidity and VRP
-0.9714
83


Table 4: Friedman Chi-Square Test for Model Fitting Efficiency  

There are 64 values of RMSE means from in-sample curve fitting under the NSS-Liquidity, B-Spline with Liquieity and B-Spline with Liquidity and VRP models, and there are 21 from out-of-sample fitting. Each set is ranked daily to obtain the Friedman statistic with the B-Spline with Liquidity model as the reference.

In-Sample
Out-Of-Sample
p-value
0.00000
0.00002

Friedman Chi-Square Statistic
96.0313
21.4286


[image: image36]
Figure 1  Fitted Yield Curve for 2005/6/21

Table 5: Yield Curve Fitting Parameters for June 21, 2005
Model
β0
β1
β2
β3
τ0
τ1
NSS with Liquidity
2.92
-1.81
-0.01
-2.47
1.08
2.86


b1
b2
b3
b4
b5
b6
B-Spline with Liquidity
7.54
10.95
19.21
20.17
15.05
16.75

B-Spline with Liquidity
7.58
10.87
19.42
19.78
15.98
14.75


[image: image37]
Figure 2  Fitted Yield Curve for 2005/9/13 


Table 6: Yield Curve Fitting Parameters for September 13, 2005
Model
β0
β1
β2
β3
τ0
τ1
NSS with Liquidity
3.06
-2.51
-10.53
11.05
3.15
2.21


b1
b2
b3
b4
b5
b6
B-Spline with Liquidity
7.53
10.98
18.87
21.21
14.89
19.58

B-Spline with Liquidity
7.59
10.85
19.16
20.59
17.09
14.64
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Figure 3  Fitted yield curves with various liquidity measures, 7/27/05
Table 7:  Fitted Price Errors Time Series for Major Government Bonds,

First 120 Trading Days, Unweighted and Liquidity-Weighted

B-Spline methods, unweighted and liquidity-weighted are used to fit the 10-year, 5-year and 2-year Taiwanese government bonds for up to the first 6 calendar months from issuance. Errors are computed by subtracting the daily volume-weighted trading price from the fitted price for both models.

Bond Code
Issued Date
Median 
Std. Dev.
No. of Obs.

Unweighted

2-year

A92109
11/17/03
0.0773
1.1726
70

A93101
01/09/04
-0.4445
2.8211
122

A93105
04/15/04
0.5740
2.7561
127


5-year

A92108
10/30/03
-1.1671
1.1716
113

A93102
01/30/04
-0.8465
2.8205
129

A93107
07/22/04
-0.5248
1.6016
128


10-year

A92104
03/07/03
2.2429
2.2088
130

A92107
00/19/03
-1.6658
1.2133
113

A92110
12/05/03
-3.5799
2.9441
124

A93103
02/10/04
-3.1858
3.0884
129

A93108
09/15/04
0.8899
2.1993
120



Liquidity-Weighted

2-year

A92109
11/17/03
1.6641
1.4398
70

A93101
01/09/04
0.4759
2.8381
122

A93105
04/15/04
0.5708
2.4508
127


5-year

A92108
10/30/03
-1.1494
1.2222
113

A93102
01/30/04
-0.9860
2.7123
129

A93107
07/22/04
-1.0646
1.3652
128


10-year

A92104
03/07/03
0.1694
1.7450
130

A92107
00/19/03
-3.6240
1.4882
113

A92110
12/05/03
-6.1823
3.2460
124

A93103
02/10/04
-0.5823
3.3303
129

A93108
09/15/04
0.4338
2.4707
120

Table 8:  Autocorrelation of Fitted Price Errors from the B-Spline Model,

Basic and Control AR(2) Model for Near-by On-the-run 10-year Issue
Price errors from the unweighted B-Spline are used in an AR(2) model. All errors are computed for 6 calendar months from issuance.The control variable is the 10-year on-the-run issue when the issue in interest is issued. When a subsequent 10-year on-the-run is issued, the control variable is still used without switching to the new on-the-run issue. The Basic Model is 
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, with i denoting the ith bond issue, while the Control Model is defined by 
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is the price error concurrent on-the-run 10-year issues.
Bond Code
Lag 1
Lag2 
R-squared
Basic Model

2-year

A92109
0.5904 (0.1558)**
0.1743 (0.0147)
0.3827

A93101
0.8295 (0.0920)**
0.2491 (0.1084)
0.8396

A93105
0.9451 (0.0899)**
-0.0933 (0.0899)
0.7494


5-year

A92108
0.5712 (0.0945)**
0.3544 (0.0939)
0.5150

A93102
0.9275 (0.0899)**
-0.0499 (0.0900)
0.7383

A93107
0.7913 (0.0902)**
0.0458 (0.0909)
0.6580


10-year

A92104
0.5214 (0.0865)**
0.3170 (0.0867)
0.3221

A92107
0.6887 (0.0957)**
0.2911 (0.0973)
0.5886

A92110
0.9838 (0.0913)**
-0.0226 (0.0914)
0.7810

A93103
0.8881 (0.0923)**
0.0337 (0.0885)
0.6768

A93108
0.9995 (0.0923)**
-0.1093 (0.0926)
0.8050

Control Model

Major Indexa
Lag 1
Lag2 
R-squared

2-year

A93101b
0.1028 (0.0307)**
0.7273 (0.0934)**
0.1975(0.1051)
0.8539

A93105 c
0.1565 (0.0342)**
0.7697 (0.0917)**
-0.0686(0.0835)
0.6861


5-year

A93102 b
0.2338 (0.0370)**
0.6666 (0.0887)**
-0.0796(0.0791)
0.8030

A93107 c
0.1229 (0.0293)**
0.5938 (0.0969)**
0.0781(0.0857)
0.7009


10-year

A93103 b
0.6055 (0.0566)**
0.4097 (0.0792)**
-0.0660(0.0651)
0.8330

A93108 c
0.0586 (0.0229)*
0.9075 (0.0971)**
-0.0743(0.0914)
0.8155

* 
Significant at the 5% level.
** 
Significant at the 1% level.

a
The Major Index for each issue is the most recent on-the-run 10-year bond.

b
A92110, issued on 12/05/03 is the Major Index for these issues.

c
A93103, issued on 02/10/03 is the Major Index for these issues.

Table 9:  Vector Error Correction Cointegration Analysis, 
2-, 5- and 10-year on-the run issues and 10-year off-the-run issues
Price errors from Liquidity-weighted B-Spline models are used in the cointegration analysis as unit roots are detected. Coefficients for cointegration equations from Vector Error Correction models are reported with each of the three on-the-run issues as the reference variable with an coefficient of 1. The model is conducted with 2 lags and with an intercept in the estimation of the cointegration equation.
Cointegrating Variable
10-year on-the run
5-year on-the run
2-year on-the run

2-year

A93105
-0.0048 (0.1639)
0.1988 (6.8275)



5-year

A93107
-0.0241 (0.3546)

5.0291(84.2043)

10-year

A92110
-0.3497 (0.1350)**
14.5122 (6.1796)**
72.9836 (34.3293)**
A93103
0.5823 (0.1555)**
-24.1616 (5.5232)**
-121.5114 (32.4746)**
A93108

-41.4947 (8.3164)**
-208.6811 (47.4212)**
* 
Significant at the 5% level.

** 
Significant at the 1% level.
Yield/rate





Time to maturity





Yield/rate





Time to maturity
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� We have also conducted similar analyses using the 2- or 5-year issues as control variables, but are not able to obtain results with significant concurrent influences.
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