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Abstract:
The paper incorporates a partial asymmetric price adjustment model for individual actions into an ARCH-type model and clarifies the relationship between the price adjustment speed and the Fama's random walk form of market efficiency. The stock price instantaneously and fully adjusts to the intrinsic value if and only if the market is efficient in the Fama's sense. Thereby, the paper provides a hypothesized individual action with the Fama’s market efficiency. As an operational example, the Tokyo stock market is found to be inefficient during 1980-2005. The speed of price adjustment is asymmetric in the 80s but symmetric in the 90s and 2000s.
1. Introduction.
      The definition of market efficiency by Fama(1976) is based on informational concept. It is characterized as one in which security prices fully reflect all available information. In the framework of empirical researches, it is defined as the expectation of the returns conditional on the previous information is constant, i.e.
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 constant, which is a so-called Fama’s random walk form of the market efficiency. The concept of market efficiency is silent, however, about the market processes that might deliver the hypothesis on individual actions. 

There are, so far, some hypotheses on individual actions, which are not related to the definition of market efficiency by Fama (1976). The first idea was formalized by Grossman and Stiglitz (1980). In their theoretical model, the market price does not fully incorporate all knowable information because informed individuals make returns by exploiting deviations of prices from security values. Later, Busse and Green (2002) found that the small profits available to very short horizon traders (i.e., informed individuals) are consistent with compensation for continuously monitoring information sources, supporting the theory by Grossman and Stiglitz (1980). Second, without characterizing individual actions, Busse and Green (2002) empirically find that news reports about individual stocks on the financial television network CNBC are incorporated into stock prices within few minutes. They shed light on the degree of efficiency and conclude that the market is efficient enough that a trader cannot generate profits based on widely disseminated news unless he acts almost immediately. Third, Amihud and Mendelson (1987) and Koutmos(1998, 1999) developed and linked the partial adjustment price model for individual actions to an ARCH-type model. The stock price is adjusted to intrinsic values (security values) by portfolio mangers and the adjustment speed is different depending on whether the stock price is over or under the intrinsic value. Koutmos (1998, 1999) also offered an empirical new finding that the adjustment speed is faster when the stock price is over the intrinsic value. Motivated by his new finding, Pagan and Soydemir (2001), Bang and Shin (2003), and Nam et al. (2003, 2005) have got the same finding as Koutmos (1998, 1999). 

The purpose of this paper is twofold. First, we define the market efficiency in the framework of a partial price adjustment model for individual actions, show the equivalence between our definition and Fama’s random walk form of the market efficiency, and thereby, provides a hypothesized individual action with the Fama’s market efficiency and inefficiency. Second, as an operational example of the model, we examine whether the Tokyo Stock Market is efficient. 

The organization of the paper is as follows. Section 2 sketches a partial adjustment price model by Amihud and Mendelson (1987) and Koutmos (1998, 1999)  and defines the market efficiency on the model. Section 3 shows the equivalence between our definition and Fama’s random walk form of the market efficiency. Section 4 provides the estimation results of the Tokyo Stock Market during 1980-2005. Section 5 gives concluding remarks. Appendix gives proofs of propositions.
2. The Model
2. 1  Partial Asymmetric Adjustment Model and Market Efficiency　
      We follow a partial adjustment price model by Amihud and Mendelson (1987) and Koutmos (1998, 1999) with some modifications. The model distinguishes the unobserved intrinsic value of stock (Vt ) from the observed stock price (P t ), both are expressed in natural logarithms. The process of intrinsic value follows a random walk process with drift:
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where a is constant and I t -1 denotes the information set of the time t-1. We assume that the disturbance term (u t ) has the EGARCH process proposed by Nelson (1991)): 
       
[image: image3.wmf].

 

)

1

 

,

0

(

~

 

/

 

log

|))

z

E(|

 

-

|

z

(|

  

 

log

t

2

1

 

-

t 

3

1

 

-

t 

1

 

-

t 

2

1

 

-

t 

1

0

2

t

N

u

z

u

t

u

u

s

s

a

a

a

a

s

+

+

+

=

          (2)

 The partial asymmetric adjustment price process of Pt represents that adjustment costs are asymmetric in up and down markets:
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(3)
where (Vt - Pt-1)+ = max{ Vt - Pt-1, 0}, and (Vt - Pt-1)- = min{ Vt - Pt-1, 0}. If  =  (= ), equation (3) reverts to the basic partial adjustment price process proposed by Amihud and Mendelson (1987). Koutmos (1998; p.280, 1999; p.86) formulated the asymmetric adjustment to intrinsic value in (3). None of Amihud and Mendelson (1987) and Koutmos (1998, 1999), however, investigated the theoretical relationship of partial adjustment price process to the market efficiency. This paper examines the implications of the partial asymmetric adjustment model for the market efficiency. The market efficiency based on the partial adjustment price model is defined as follows:
Definition 1: The market is said to be efficient if ( + = ( (  = 0 in equation (3) and inefficient otherwise.
      This definition of market efficiency indicates that the speeds of price adjustment of both positive and negative discrepancy for the intrinsic value are equal to unity, namely the stock price instantaneously and fully adjusts to the intrinsic value: 
 

[image: image5.wmf]t

t

t

t

t

t

t

t

t

t

V

P

P

V

P

V

P

V

P

P

=

-

=

-

+

-

=

-

-

-

-

+

-

-

  

and

  

,

)

(

)

(

1

1

1

1

.
(4)
If 0 < ( +, ( ( <1, the stock price partially adjusts for the intrinsic value. When ( +, ( ( < 0, the stock price overshoots the intrinsic value. 
2. 2  The Reduced Model 
      We have an autoregressive process for the returns.
Proposition 1: The return process consisting of (1) and (3) has the following expression
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where 
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      The model (5) with (2) is an EGARCH model. Equation (5) is alternatively expressed as
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where
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. If  =  (= ), equation (6) reduces to
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The process of
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. However, except for the case of  = , the conditional expectation of t is not zero and the process of {t} is serially dependent as will be shown in Lemma 1 of Appendix.
 The conditional variance of t does not follow an EGARCH process unlike to that of ut. 
3. The Relationship to Fama’s Efficiency and an Illustrative Example
3. 1 The Equivalence of the two definitions of efficiency

     The definition of market efficiency by Fama(1976) is based on informational concept. Fama(1976, 16th row on pp.144) argues that ”if the market is efficient, there is no way to use any information available at time t-1 as the basis for a correct assessment of an expected value of Rt which is different from the assumed constant equilibrium expected return, E(R). Since part of the information available at t-1 is the time series of past returns, there is no way to use the past returns as the basis for a correct assessment of the expected return from t-1 to t which is other than E(R).” In the framework of this paper, Fama’s definition of efficiency is equal to 
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     In order to find the relationship between the two definitions of efficiency, we consider the conditional expectation of Rt in (6).
Proposiion 2: The expectation of Rt conditional on It-1 is given by
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where
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 respectively denote the distribution and density functions of the standard normal distribution.

     Next corollary readily follows from proposition 2. It shows that the definition of market efficiency in this paper is equivalent to that of Fama (1976).
Corollary 1: The market is efficient if and only if equation (8) holds. That is,
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 if and only if   =  = 0.                        (10)
     If the investor's adjustment to the intrinsic value is symmetric, i.e.  =  (= ), we have the auto-regression equation (7). In this case, the first order autocorrelation of
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 is equal to the coefficient of Rt-1 (i.e.  and Fama's definition of market efficiency is equivalent to  In many empirical studies, the hypothesis of  is tested against 
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 In the case of  
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, however, it is not obvious whether the equivalence between and  =  = 0 holds. Propositions 3 and 4 are intended to partially answer this question. As has been mentioned, the error terms in equation (6) are correlated to the explanatory variables, and it is not easy to derive the explicit formula of the first order autocorrelation coefficient of Rt. Hence, we examine the autocorrelation of
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in equation (5) instead of equation (6) for the sake of simplicity of exposition. 

Proposition 3: The first two unconditional moments of 
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Proposition 4: Let the first order autocorrelation of
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 be  If both  and  are non negative, the following inequalities hold: 
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      If  =  (= , Proposition 4 indicates that  =  =0 implies and ,  > 0 implies However, the converse statement is not justified, i.e. does not mean  =  =0. In other words, non-existence of the autocorrelation ( of
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in equation (5) doesn't necessarily imply the market efficiency ( =  = 0). Though we are not able to derive an explicit formula of the first order autocorrelation of
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in equation (6), we conjecture that doesn't imply the market efficiency.
3. 3 Statistical Inference of the Model
      The joint density function based on equation (6) is expressed as follows.
Proposition 5: The joint density function of {R1, . . . , RT} is given by
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where T+ = {t | Rt 
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N }, N = {1, . . . , T}, and = {a, } is a vector of unknown parameters. 
      The maximum likelihood estimate of the parameter vector  is obtained by maximizing the likelihood of (14) with respect to  We test the null hypothesis of market efficiency against the inefficiency of market:  

      H0 : vs  H1 : 
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(15)
The symmetric adjustment speed can be tested as

      H0 : (+( -vs  H1 : (+
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( -  
(16)

3. 4  An Illustrative Example

 We investigate the efficiency of the Tokyo Stock Market for illustrating how our model works. The daily closing stock price data of the Tokyo Stock Exchange Price Index (TOPIX) are purchased from the Data Base of Nomura Research Institute, JAPAN. Figure 1 indicates the data of stock prices and returns from January 4, 1980 to December 2, 2005. It shows the up-trend to the end of 80s, but the down-trend in 90s and 2000s. The returns move mildly in the former period, while they greatly fluctuate in the latter one. Based on these visual observations, the sample period is divided into the two sub-periods: the first is from January 4, 1980 to the end of 80s, the second is from the beginning of 1990 to December 2, 2005. 

      The model is estimated by the maximum likelihood estimation method using the joint density of (14) for each of the sub-samples. The results are shown in Table 1. The estimates of the drift term in equation of (1) are positive in the first sub-sample but negative in the second, supporting the up-trend of stock prices in the 80s and the down-trend in the 90s and after. The estimates of (1 and(3 reveal asymmetric volatility and variance persistence, supporting the stylized facts for stock price movements. 
      Main interests of this study are market efficiency and asymmetric adjustment speeds to intrinsic values. The estimates of (+ and ( - are positive and significant at 5% level for each sub-sample period. Table 2 shows that the null hypothesis of market efficiency (H1: (+=( -=0) is rejected in both sub-samples. Thus, the market is inefficient in the sense adjustment speed as well as in the Fama’s sense due to Corollary 1. The null hypothesis of symmetric adjustment speeds (H2: (+ = ( -) in equation (3) is rejected in the first sub-sample but not in the second. 
      How do we interpret the findings? In our framework, the observed values of stock price are adjusted towards the intrinsic values (security values). The adjustment speeds are (1-(+) if 
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< 0). In particular, in the first sub-sample the speed is (1-0.284) for the case of under-intrinsic value (positive return), and (1-0.199) for over-intrinsic value (negative return). The adjustment speeds are significantly different in this period. Koutmos (1998, pp. 285) finds the asymmetric adjustment speeds in many stock markets and argues as “One possibility is that investors have a higher aversion to downside risk, so they react faster to bad news. The use of stop-loss orders is an example of such aversion. Also, portfolio managers feel they are penalized more if they under-perform in a falling market than in a rising market.”
[ INSERT Figure 1 and Tables 1, 2]

4. Concluding Remarks

      The concept of market efficiency defined by Fama (1976) is silent about the market processes that might deliver individual actions. This paper incorporates a partial adjustment price model by Koutmos (1998) and Amihud and Mendelson (1987) into an ARCH-type model of the returns and clarifies the relationship between the adjustment speed and the Fama's market efficiency. We find that the stock price instantaneously and fully adjusts to the intrinsic value if and only if the market is efficient in the sense of Fama (1976). By showing the equivalence of the two concepts, this paper gives an economic foundation to the Fama’s random walk form of market efficiency hypothesis. 
      As an illustrative example, we find that the Tokyo stock market is inefficient during 1980-2005 in the sense that the adjustment speeds to the intrinsic values are less than 1. In the 80s, the stock price adjustment is faster when the price is above the intrinsic value than when the price is below it. 
     There has never been trial to investigate the market efficiency by using the ARCH-type model with individual actions hypothesis.
                Appendix : Proofs of Propositions
     This appendix gives proofs of propositions stated without proofs in the text, after providing a lemma which is useful for recognizing the statistical nature of the partial adjustment model.
Lemma 1:  The conditional expectations of 
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 respectively denote the distribution and density functions of the standard normal distribution. Moreover, each process of
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Proof:  Let us define the set A = { Rt | Rt 
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Then, (A.1) follows from (A.3) and (A.4). Next, we calculate the conditional expectation of t. Noting that
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Proof of Proposition 1:  Rewrite the adjustment process (3) as
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Proof of Proposition 2:  Substituting (A.1) and (A.2) into the equation
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the required result in (9) is obtained.                                   □

Proof of Proposition 3:  From (5), we have 
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where a* = |a| +
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and 
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Proof of Proposition 4:  From (6), the first order auto-covariance of
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If ,  
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The required result is obtained from (A.15).                             □
Proof of Proposition 5:  From (6), the return process is rewritten as
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The conditional density of Rt given It-1 is written by 
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Substituting equation (A16) into the following relation
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the required joint density in (14) is obtained.                            □
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Figure 1. TOPIX and Its Returns
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Table 1. Estimates of Parameters
	Periods
	1/4/80 –12/ 28/89
	1/4/90 – 12/2/05

	a
	0.043*
	-0.026

	
	(4.77)
	(-1.47)

	
	0.284*
	0.111*

	
	(19.14)
	(6.70)

	
	0.199*
	0.116*

	
	(9.90)
	(5.97)

	1
	-0.151*
	-0.098*

	
	(-10.71)
	(-10.76)

	3
	0.933*
	0.964*

	　
	(92.30)
	(176.96)


Notes: The numbers in parentheses denote t-statistics. The asterisk "*" is significant at 1% level.

Table 2. Testing Results

	Null Hypothesis
	Distibution
	1/4/80 –
12/ 28/89
	1/4/90 – 
12/2/05

	H1: =0
	
	380.41*
	58.22*

	H2 : 
	
	16.72*
	0.07


Note : The asterisk "*" is significant at 1% level. The critical values of (2(2) and (2(1) distributions are respectively 9.21 and 6.34 at 1% level. 
� Equation (7) in Koutmos (1998, pp. 280) has mistakes and should be corrected as equation (6) in this paper. Since both autoregressive coefficients and error terms depend upon the sign of Rt, the optimal one-step ahead forecast in his equations (8a) and (8b) is incorrect. The correct formula is shown in proposition 2 of this paper. Moreover, since the conditional expectation of t is not zero and {t}are serially dependent, then t can not follow the GARCH model. Though Koutmos (1998) finds empirically useful facts about the stock market movements, the partial asymmetric adjustment model does not logically induce the Threshhold GARCH model which is used for his empirical studies. Extending Koutmos (1998), equation (4) of Koutmos (1999, pp. 86) introduces an error term in the asymmetric price adjustment process. However, the error term in equation (4) causes discrepancy of stochastic orders between ut and t in his equations (4) and (5) because t is expressed as difference of ut and ut-1. In other words, if t is an I(0) process, then ut becomes an I(1) process.
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