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Determining the Practical Dimension of an Interest Rate Model

Abstract

An important issue in interest rate modeling is the number and nature of

the random factors driving the evolution of the yield curve. This paper uses

principal component analysis to examine the dimension of the time series of

historical yield curve changes determined by a variance threshold. Unlike other

studies investigating the number of factors using principal component analysis,

we statistically test the explanatory power. While there is no clear demarcation

between operative factors and noise, the first two principal components pick

up between 92 and 94 percent of total interest rate variation in a 90 percent

confidence interval, and the first six pick up between 99.2 to 99.5 percent. In

contrast, a single component model explains between 67 to 78 percent of the

total variation within a 90 percent confidence interval.
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1 Introduction

An important issue in interest rate modeling is the number and nature of the

random factors driving the evolution of yield curve. A number of studies em-

ploying factor analysis and principal component analysis have found that two

to three factors explains most of the variation in returns. See for example, (Lit-

terman and Scheinkman 1991), (Barber and Copper 1996), (Falkenstein and

Hanweck 1997), (Geyer and Pichler 1999), (Golub and Tillman 2000), (Dungey,

Martin, and Pagan 2000), (Lekkos 2001), (Brummelhuis, Cordoba, Quintanilla,

and Seco 2002), and (Soto 2003).

Many researchers have interpreted the first factor as a parallel shift in the

yield curve. Litterman and Scheinkman’s (1991) comment is representative of

received opinion:1

[T]he yield changes caused by the first factor are basically constant

across maturities. That is, the first factor represents essentially a

parallel change in yields. . . . Thus, hedging against Factor 1 is close

to duration hedging. . . . The impact of Factor 1

Likewise, the second factor is interpreted as a change in shape or a "twist" in

the yield curve, and perhaps is indicative of so called "twist risk," to which a

duration matched portfolio with high convexity is exposed (Fong and Vasicek

1984).

This paper seeks to fill a gap in the literature by applying statistical tests to

the results of principal component analysis of historical yield curve changes. In

particular, we examine the dimension of the time series of historical yield curve

changes determined by a variance threshold. Based upon techniques developed

by Lawley, James, and Anderson,2 we are able to establish confidence intervals

for the proportion of variation explained by models with K = 1, 2, ...,m com-
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ponents. The lower bound on the confidence level provides a more reliable and

conservative assessment of a K-component model’s explanatory power than a

point estimate. Further, our approach can be used to evaluate the trade-off

among the number of components, the explanatory power, and the confidence

interval. Finally, we can determine a practical dimension on an interest rate

model by specifying the minimum acceptable explanatory power for a given

level of significance. The practical dimension K equals the smallest number of

components under which the null hypothesis that a K-component model ex-

plains at least the threshold level of variance is not rejected for a given level of

significance.

2 Principal Component Analysis

It is our everyday experience that interest rate changes for different maturities

are positively correlated. If the correlation is perfect, then the vector represent-

ing the time t change in the yield curve Xt at defined set of m maturities can

be expressed in terms of a single component:

Xt = btU

where U is an m× 1 vector independent of time and bt is a scalar that changes

over time. The vector U can be thought of as the direction of the shift and bt as

the component of the shift in the direction U (Reitano 1996). Indeed, we will

interpret bt as a random variable that determines the magnitude and sign of the

shift, and U as vector indicating the direction. For example, if U is a vector

of ones, then we have the so-called parallel shift model. If the sign of the all

the elements of U are positive and decreasing, then short-term rates are more

volatile than longer-term rates.
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The number of factors and their respective shape is an empirical question.

If a single component models explains most but not all the variation in X, then

we can include an error or noise term:

Xt = b1tU1 +Et

In general, for m maturities, we can exactly represent the yield curve change as

linear combination of m basis vectors:

Xt = b1tU1 + ...+ bmtUm

where bkt is the projection of Xt onto Uk.

As a practical matter, we like to develop a parsimonious model in which the

number of components is small K ¿ m but the explanatory power is high:

Xt = b1tU1 + ...+ bKtUK +Et

= bXt +Et

where bXt is the approximated (or explained) value of Xt by the K component

model and Et is the deviation of the approximation from the actual value. Notice

that Et is simply the sum of the terms we have deemed insignificant. Without

loss of generality, assume the set of direction vectors U1, ..., Um is orthonormal.3

At time t the components by definition are the projection of Xt onto the vectors

U1, ..., UK :

bkt = U 0kXt for k = 1, 2, ...,K

The sum of squared errors at time t equals the difference between the total and
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explained sum of squared errors:

E0tEt = X 0
tXt − bX 0

t
bXt

= X 0
tXt − (U 01XtU1 + ...+ U 0KXtUK)

0
(U 01XtU1 + ...+ U 0KXtUK)

= X 0
tXt − (U 01X 0

tXtU1 + ...+ U 0KX
0
tXtUK)

The objective of principal component analysis is to choose the set of direction

vectors such that the average of the squared error over the historical sample

t = 1, 2, ..., N is minimum. Given that the sample X is fixed, this is equivalent

to maximizing the sum of the explained variance of X:

1

T

TX
t=1

bX 0
t
bX =

1

T

TX
t=1

(U 01X
0
tXtU1 + ...+ U 0KXtUK) = [U1 · · ·UK ]0 V [U1 · · ·UK ]

(1)

where V is the sample covariance matrix.

Based upon a well known result from linear algebra (see (Strang 1980)), the

positive definite matrix V has positive distinct eigenvalues λ1, . . . , λm and the

eigenvectors Q = [Q1, ..., Qm] are orthonormal. Further, the covariance matrix

V can be factored as follows:

V = QΛQ0 (2)

where Λ is a positive diagonal matrix: Λ = diag(λ1, . . . , λm). Substituting (2)

in for V in equation (1), gives

1

T

TX
t=1

bX 0
t
bX = [U1 · · ·UK ]0QΛQ0 [U1 · · ·UK ] (3)

Assume the eigenvectors and the elements of Λ are both arranged in decreasing

order of the eigenvalues. Then for a single component model (K = 1), expression

(3) is maximized if U1 = Q1. Further, then the sum of the explained variances
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equals the first eigenvalue. If K = 2, then clearly U1 = Q1 and U2 = Q2 and

the sum of the explained variances equals the sum of the first two eigenvalues.

In general, the first K direction vectors equal the first K eigenvectors of the

covariance matrix. The sum of the explained variance equals the sum of the

first K eigenvalues, and the sum of the error variances equals the sum of the

remaining eigenvalues squared.

3 Estimating Principal components from His-

torical Data

The use of historical data to estimate principal components in the evolution of

the yield curve requires two levels of abstraction. First, a zero-coupon yield

curve must be inferred from a universe of treasury securities. Second, to define

and compare yield curve changes, every constructed zero-coupon yield curve

must be interpolated at a common set of nodes. For the estimates presented

below, we use Bliss’s unfiltered implementation of McCulloch’s cubic spline

regression for the zero-coupon yield curve for with monthly data for the ten year

period from 1992 to 2001.4 For the common set of nodes we use McCulloch and

Kwon’s selection (McCulloch and Kwon 1993). These nodes are given in years

in Table 1.

Table 2 lists the twelve largest eigenvalues. The remaining eigenvalues are

small, but as our tests show, still significantly different from both zero and

each other. Graphs of the first four principal components are given in Figures

1 and 2. By construction all the curves are orthogonal. The first component

can be interpreted as an approximate translation or parallel shift.5 The second

component contains a twist at roughly eight years, and perhaps is indicative of

so called "twist risk."
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0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667
0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333
1.417 1.500 1.750 2.000 2.500 3.000 4.000 5.000
6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000
14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000
22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000

Table 1: Common yield curve nodes, in years, used for principal component
analysis. The discount function is estimated each month with a cubic spline;
the spline is then interpolated at these nodes.

0.0247224 0.0067709 0.0012182 0.0005729 0.0002075 0.0001106
0.0000804 0.0000599 0.0000294 0.0000160 0.0000121 0.0000063

Table 2: The twelve largest eigenvalues of the sample covariance matrix for
Treasury securities 1992—2001 at nodes listed in Table 1.

The statistical tests described in the followings sections were developed by

the statisticians, Lawley, James, and Anderson.6 Although principal component

analysis does not assume the data are normal, like most parametric statistics,

the tests depend on the assumption or normality.

4 Practical Dimension: Proportion of Variation

Because the covariance matrix is nonsingular, to fully explain the time series

of yield curve shifts over the sample requires all the principal components. As

a practical matter, we might expect that the components corresponding to the

smallest eigenvalues are spurious. Consequently, we can limit the number of

components required. However, to establish a limit, we need to specify a noise

threshold. Roughly speaking, we start by fixing the fraction h of unexplained

to total variance that can be tolerated. Then for a given confidence level, we

determine the minimum number of components under which we fail to reject

the null hypothesis that the fraction of unexplained variation equals h. Suppose
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we are satisfied with a K component model so long as the fraction of variance

explained by the remaining principal components is less than or equal to h.

Formally, we consider the set hypothesis,

H∗K :
Pm

i=K+1 λiPm
i=1 λi

= h.

for K = 1, 2, ...,m− 1. These hypotheses can be tested with the statistics

MK = −h
KX
i=1

li + (1− h)
mX

i=K+1

li.

For ifH∗K is true, then (see (Muirhead 1982), page 416)
√
nMK is asymptotically

N(0, τ2) as n→∞ where

τ2 = 2h2
KX
i=1

λ2i + 2(1− h)2
mX

i=K+1

λ2i .

Thus, replacing λi by li, i = 1, . . . ,m, in this expression for τ2, we obtain a test

of H∗K for our sample data. By computing the choices of h and K that make

H∗K acceptable, we derive the confidence intervals.

These computations provide a practical measure of the dimension of the

interest rate fluctuation space. Table 3 shows the total fraction of variation

explained (1−h) by the first six principal components, and the 90 percent con-

fidence interval based upon our null hypotheses. Figure 3 displays the fraction of

total variation explained by models with one, two, three, and four components

versus the probability (p) of rejecting the null hypothesis.

The results indicate that the first principal component explains 73 percent

of the observed interest rate. The 90 percent confidence interval ranges from 66

to 78 percent of the total variation. For a two component model, the observed

variation increases to 93 percent with a confidence interval ranging from 92 to
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1 p.c. 2 p.c.’s 3 p.c.’s 4 p.c.’s 5 p.c.’s 6 p.c.’s
Lower 5% 67% 92% 96 % 98.1% 98.8% 99.2%
Observed 73% 93% 96.7% 98.4% 99.0% 99.4%
Upper 5% 78% 94% 97 % 98.7% 99.2% 99.5%

Table 3: Confidence intervals and actual observed values of proportions of vari-
ation captured by the first 6 principal components.

94 percent. A six component models gives a nearly perfect fit with a confidence

interval ranging from 99.2 to 99.5 percent.

5 Conclusion

Principal components analysis indicates strong support for a multifactor model.

While there is no clear demarcation between operative factors and noise, the first

two principal components pick up between 92 and 94 percent of total interest

rate variation in a 90 percent confidence interval, and the first six pick up

between 99.2 to 99.5 percent. In contrast, a single component model explains

between 67 to 78 percent of the total variation within a 90 percent confidence

interval.

The confidence interval provides a basis for comparison with the measure-

ments of explained variation observed by other authors. For example, our 90%

confidence interval for the first component does not include the 80% propor-

tion found in Barber and Copper (1996), or any of the proportions found by

Litterman and Scheinkman (1991).7

The lower bound on the confidence interval provides a more reliable and

conservative assessment of a model’s explanatory power. In addition, Figure

3 can be used to evaluate the trade-off among the number of components, the

explanatory power, and the confidence level. A practical dimension for an

interest rate model can be determined by specifying the minimum acceptable
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explanatory power for a given level of significance. The practical dimension

K equals the smallest number of components under which the null hypothesis

that a K-component models explains at least the threshold level of variance

is not rejected for a given level of significance. For our sample interest rate

data, with a variance threshold of 91 percent at a 90 percent confidence level

the practical dimension is two, because the lower bound on the 90 percent

confidence interval for a two component model is greater than 91 percent. A

higher variance threshold or higher confidence level could require more than two

components.
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Notes
1Along the same lines, see (Barber and Copper 1996), Willner (Willner 1997)

and Soto, Note 17 (Soto 2003).

2 We rely on the exposition by Muirhead (Muirhead 1982).

3In other words

U 0iUj =

 0 if i 6= j

1 if i = j

4Details are given in Bliss’s paper (Bliss 1997); Mr. Bliss kindly provide

updated data.

5The sign of the principal component is arbitrary. Depending upon the sign

of the coefficient at time t the shift could be up or down.

6 We rely on the exposition by Muirhead (Muirhead 1982).

7Also compare to Soto (Soto 2003), note 16, for Spanish bonds.
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Figure 1: Principal components derived from monthly McCulloch yield curve es-
timate changes. Parameters derived by R. Bliss from 1992—2001 CRSP Treasury
data using McCulloch’s programs.
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Figure 2: Principal components derived from monthly McCulloch yield curve es-
timate changes. Parameters derived by R. Bliss from 1992—2001 CRSP Treasury
data using McCulloch’s programs.
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Figure 3: p-values for the explanatory power of the 4 largest principal compo-
nents. 90% confidence intervals are indicated by the vertical dotted lines. The
vertical axis is scaled logarithmically for better visualization.
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