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Abstract  
 
This paper studies market impact of capital movements driven by fund selection and 
investor sentiment. It focuses on the resulting effects on downside market behaviour 
and reward-to-risk efficiency. Updated with net fund profitability, the returns-chasing 
behaviour of “smart money” and its switch between fund styles are modeled using the 
Markovian chain. Although the results confirm that liquidity as opposed to capital 
immobility can indeed be stabilizing, it is however suggested that downside risk and 
inefficiency are significantly attributable to investor overreaction to profitability. This 
is particularly disadvantageous in bear markets, where vast investment withdrawal in 
a hasty fashion can exacerbate the already worsening market condition and be 
devastating. The finding of this paper provides an alternative perspective to 
conventional wisdom on capital movements and has its relevance to the recent crises 
in capital markets.  
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1. Introduction 
 

The term “smart money” has been widely used in finance to refer to the investments 

following winning funds or being able to identify superior fund styles. The 

movements of smart money are mostly driven by fund performance and investor 

sentiments. The market condition is also believed to influence fund selection. There 

are many observations of investment movements, for instance, a shift from active 

investment management to passive indexing in recent years. In the US equity markets, 

14.8% of actively managed domestic equity funds liquidated or merged during 2000-

2002, including 6.6% in 2002 alone. At the state level, Connecticut State Trust Fund, 

in charge of the state’s $12.7 billion pooled pension fund, bumped up their indexed 

portion from $3.74 billion to $3.99 billion in just two months from July to September 

2002, with the long-term goal for the indexed proportion of equities set to be 50%. At 

the firm’s level, in July 2002 the trustees of Intel’s profit-sharing and pension plans 

fired their 10 external money managers and decided to switch an additional $300 

million of equities to in-house passive management. All of the above are examples of 

a common phenomenon of moving from active to passive investment management.  

 

There have been abundant but diverse stories on the performance of mutual funds and 

management styles. Researchers along this line study the cost-benefit comparison 

across different fund styles and they debate on whether active fund management adds 

value. Controversy however still remains. Carhart (1997) finds that active fund 

management tends to have lower benchmark-adjusted net returns than passive 

indexing funds. He also finds that net returns are negatively correlated with expense 

levels, which are generally much higher for actively managed funds. Gruber (1996) 
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finds that the average US mutual fund underperforms passive market indexes by about 

65 basis points per year from 1985 to 1994. On the other hand, Grinblatt and Titman 

(1989, 1993) and Wermers (1997) both reach the conclusion of higher gross profits by 

active fund management, especially for growth-oriented funds, which outperform 

their benchmarks by an average of 2% to 3% per year before expenses. Wermers 

(2000) supports the value of active mutual fund management based on the dataset of 

US equity mutual fund market from 1975 – 1994. There are also studies examining 

whether the evidence of superior performance by active management is due to pure 

luck or there exist “hot hands” with stock-picking talents. For example, Grinblatt, 

Titman and Wermers (1995) find that superior fund performance is significantly 

attributable to the characteristics of the stocks held by funds. They also find that the 

majority of mutual funds tend to actively invest in stocks with high past returns.  

 

While attempts have been made to answer whether actively managed funds 

outperform the market, the literature however has not seen much investigation on the 

market impact of fund selection. It is natural to expect that overall capital flows driven 

by fund selection will bring about a considerable effect on financial markets. This 

paper contributes to study what effects may arise from dynamic capital movement, 

and in particular, its potential impact on downside market behaviour and also reward-

to-risk efficiency. The dynamics of capital flows among fund managements is 

modelled using the Markov chain. The transition probabilities of the Markov chain are 

formalized as functions of cost-adjusted fund performance. The focus here is on the 

market impact of investment movement driven by fund selection and investor 

sentiment. It is in fact not difficult to imagine the link between fund selection and the 

equilibrium price dynamics. The link can be simply understood by a process where 
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prices determine fund performance; the performance comparison amplified by 

investor overreaction in turn motivates the movement of “smart money”, whose 

dynamics then shapes new prices.  

 

In order to understand the long-term behaviour of investment flows, the steady-state 

closed-form solution is obtained in this study, conditional on the simplified 

assumption of constant transition probabilities. A change in transition probabilities 

implies a change in the popularity of different fund styles. The current study applies 

the analysis of comparative statics to study the impact on prices due to changes in 

various aspects of transition probabilities. Furthermore, using simulation experiments, 

it is also investigated the impact of fund selection and capital flows. Simulation of the 

pricing process is carried out each trading period. The movements of smart money not 

only depend on fund performance but also investor sentiment. It is thus applied to 

model varying levels of investor sentiment in response to fund profitability.  

 

The Markovian model is used in this study to capture how investors switch from one 

investment strategy (or fund style) to another. The focus is placed on their investment 

switching and the time interval is trading periods. Therefore only short term capital 

movements are considered here. This paper compares varying cases of market 

sentiment, ranging from the case of capital immobility to the case of overreacting 

investors drastically moving from one fund management to another. One major 

finding of this study is that overreaction in chasing winning funds induces significant 

overall market drawdown. It is also found that a small degree of capital movements as 

opposed to the static case can surprisingly be a stabilizing force.  
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The finding of this study therefore supports the recent unconventional view inspired 

by the Asian Crisis that short term speculative capital movements should be 

controlled if not to be discouraged. Although this perspective has been derived from 

capital flows in the international scale, it is highly related to the study here. Their 

relations can be understood by the following two points. Firstly, the rapid integration 

of capital markets has resulted in an increasing number of international mutual funds 

as an investment choice for global investors. Global funds have become an important 

factor, amongst international trade and other foreign investments, that has led to large 

scale of capital mobility in today’s international economy; see Calvo, Leiderman and 

Reinhart (1996). Investment movements in the global fund market are interconnected 

with capital flows in the international scale. This can be seen from the following 

figures. One distinct feature of international capital flows is the replacement of 

official capital with private capital as the most important component of aggregate 

flows. The World Bank Global Development Finance (1996) reports that the share of 

private flows in aggregate net flows to developing countries grew from 44.1% to 

85.7% between 1990 and 1996. Furthermore, among all types of private flows, the 

ratio of portfolio flows grew from 12.4% to 37.7% between 1990 and 1996.  

 

The second point is that the study of investment movements in one capital market can 

be generalized and explored in the international context. The analysis of market 

capital movements is analogous in several ways to the study of international capital 

flows. For example, one striking feature of international capital flows is the increased 

significance of short term flows, which is also an evident feature that characterizes the 

modern fund markets. Montiel and Reinhart (1999) found that, in capital-importing 

Asian countries, short term flows accounted for 39% of total capital inflows over the 
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period of 1990 – 1996, while for Latin America the figure was 32%. In their study, 

this increase in short term flows is identified with greater volatility in capital flows.  

 

It is noteworthy that the results in this paper are assessed in terms of market 

drawdown which quantifies uninterrupted falls of prices2. Drawdown as a downside 

measure of market movements has become increasingly popular among researchers 

and investors largely because of the recent crash of equity markets around the world. 

Drawdown provides a downside approach different from the conventional risk 

measures, such as standard deviation, that do not differentiate deviations above and 

below the mean. Tolerance of drawdown cannot be easily compensated for by the 

long-term validity of the employed strategy or the attractive expected return 

characteristic. For example, regardless of the expected future abnormal returns it is 

unlikely for a consumer/investor to tolerate a drawdown of more than 50% of his 

account. Another feature of drawdown is that it concerns the duration of loss periods 

so that consecutive losses are distinguished from intermittent losses. It is highly 

uncommon that a fund manager can hold a client whose account is in a drawdown for 

a lengthy period of time even if the drawdown size is small. In this study, the degree 

of drawdown is examined in three aspects: the number, the duration, and the 

depth/size of drawdown. These various aspects of drawdown results are compared in 

different models of dynamic capital movements.  

 

2. The Pricing Model 

                                                 
2 The statistical properties of drawdown have been studies by Sancetta and Satchell (2003).  
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Consider a market of S stocks. Let  Pt  and  St  denote the S-dimensional vectors of the 

prices and the outstanding stock shares. Prices are determined by market equilibrium. 

Demand is regarded as the time-varying flow of capital into different investment 

portfolios. Let K be the total size of capital in the economy and for simplicity it is 

assumed to be fixed. This assumption does not preclude the market capital size from 

varying; investment entry and exit are modelled as discussed later.  

 

Let i
tθ  denote the capital ratio invested in strategy (or fund) i, and X

tθ  denote the 

capital ratio staying out of the market, i.e. non-investment. There are N different 

investment strategies including non-investing, and their capital ratios sum to one, 

∑
=

=
N

i

i
t

1
1θ . i

tKθ  is the size of the capital flowing into fund i. Let  wt
i  denote the 1×S  

vector of the portfolio weights on S stocks by fund type i, and  wt
i ' 1S =1 except that 

  wt
X = 0S .   1S  is an 1×S  vector of ones and  0S  is an 1×S  vector of zeros. Market 

equilibrium at time t requires  

 
   
St�Pt = K θ t

iw t
i

i=1

N

∑ ,  (1) 

 

where �  is the element-by-element multiplication. Notice that although non-market 

participants, represented by Xi = , do not invest, i.e.  wt
X = 0S , they still affect price 

formation through the constraint ∑
=

=
N

i

i
t

1
1θ ; that is, investment entry and exit can 

change the capital ratios of different investment strategies and also the total market 

capital size.  
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Denote by tΘ  the 1×N  vector of i
tθ  for Ni ,..,1= . Denote by  Wt  the vector of fund 

i‘s portfolio weights   wt
i  for Ni ,..,1= .  Wt  thus has a dimension of 1×NS . The 

equilibrium condition (1) can also be as  

 

    St�Pt = K Θt
' Wt .  (2) 

 

Market equilibrium (2) yields the 1×S  vector of stock prices at time t as 

 

    Pt = K Θ t
' Wt�St

−1 .  (3) 

 

Equation (3) states that the dynamic equilibrium process is intrinsically determined by 

first, the investment movements among funds ( tΘ ), and second, the portfolio 

allocations of different fund managements (  Wt). The dynamics of capital movements 

is modelled in the next section. We now turn to the discussion of management types 

and portfolio choices.  

 

3. Portfolio Managements and Fund Styles 

 

In the literature of fund managements, debate has centred on two distinct approaches, 

namely, passive indexing and active portfolio managements. Indexing refers to 

passive investments that follow market indexes to form investment portfolios. The 

portfolios are therefore designed based upon the index weights. Each stock’s index 

weight is a measure of its relative market capitalization, and is calculated as the 

multiplication of the stock price and the number of shares outstanding, normalized by 
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the market capital size. Therefore, the 1×S  vector of the indexing portfolio weights is 

given by  

     wt
P = S't −1 Pt−1( )−1 St−1�Pt −1( ) .  (4) 

 

The logic behind indexing is that since each stock’s index weight measures its relative 

market capitalization, the index weight actually reflects an estimate of the ‘relative 

value’ of the company. Indexing is therefore believed to track the ‘relative values’ of 

stocks while at the same time to benefit from diversification.  

 

Conversely, instead of passively following market indexes, some fund managers trade 

actively and strategically. This type of investment management is often referred to as 

active portfolio management. Active portfolio management can have a wide variety of 

styles. Fund managers may apply systematic trading rules ranging from simple pattern 

recognition, such as head-and-shoulders, to sophisticated genetic algorithm. Or they 

may select a particular class of stocks due to their high expectations on a certain stock 

attribute such as growth, small cap, global, or emerging markets.  

 

Modern portfolio theory established by the pioneering work of Markowitz (1959) 

provides a cornerstone in building active portfolios. The key idea of the theory is to 

maximize the expected reward consistent with the willingness to bear risk, i.e. the 

mean-variance efficient frontier. A basic form in line with the mean-variance analysis 

can be given by the 1×S  vector  Ωt
−1E t , where  E t  is the 1×S  vector of the expected 

returns on S stocks, and Ωt  is the SS ×  covariance matrix at time t. The vector of 

active portfolio weights that satisfies  wt
i ' 1S =1 is therefore given by  
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   wt
A = (Ωt

−1Et ) ' 1S[ ]−1
Ωt

−1Et[ ].  (5) 

 

Active portfolios allocated according to (5) place more weights on the stocks that are 

expected to yield higher returns per unit risk. In order to maintain optimality, this 

form of investment managements involves frequent portfolio revision in response to 

the information affecting prices. An example of how an active manager forms return 

conjectures based on the simple moving-average trading rule is given below.   E t  is set 

as some monotonically increasing function of the moving-average price difference, 

and is defined as3  

 
  
E t = f (Pt −1 −

1
m

Pt −i
i=1

m

∑ ) , +ℜ∈f .  

 

m is the moving average length. The expected return is thus based on the comparison 

of the latest available price and the moving-average price of a chosen length of history. 

The function f is not required to retain a certain range expect +ℜ , since it will 

undergo normalization, as shown by (5), before the portfolio weights are formed. 

Throughout this study, we will consider  Wt  as a 13 ×S  vector given by  

 

 

 

Wt
 =

wt
P

wt
A

wt
X

 

 

 
 

 

 

 
 
,  

where   wt
P  is given by (4),   wt

A  by (5), and  wt
X = 0S .  

                                                 
3 The definition of Et essentially follows the feedback function given by Yang and Satchell (2002).  
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The profitability of fund management style i is assessed by the returns generated by 

its portfolio choices. Let i
tπ  denote the profitability of fund style i for time period t. 

i
tπ  is a scalar defined by  

  π t
i = (w t−1

i )'R t ,  (6) 

where     R t = Pt�Pt−1
−1   is the 1S ×  vector of stock returns from time t-1 to t.  

 

4. The Markov Model of “Smart Money” 
 

As equation (3) shows, one crucial factor in the dynamic equilibrium process is the 

time-varying capital flows among different investment portfolios. We model the 

dynamics of investment flows using a Markov chain. In a Markov process, the 

distribution of next states depends on the transition probabilities and the distribution 

of current states. Transition probabilities govern the probability of moving from one 

state to another, which in this study is considered to be time-varying and a function of 

some explanatory variables. This dependency property of a Markov chain makes it a 

natural and appealing choice for dynamic modelling.  

 

Denote by P
tθ  and A

tθ  the capital ratios of passive and active portfolio investments, 

and as before, X
tθ  is the capital ratio staying out of the market. The ecology of capital 

ratios is thus a 13×  vector given by  

 
















=Θ
X

t

A
t

P
t

t

θ
θ
θ

 , and  Θ t
' 13 = 1.  (7) 
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The Markovian dynamics is characterized by  

  Θ t +1
' = Θt

' M t ,  (8) 

where   M t  is the transition matrix, and is defined as  

 

 

  

M t =
Prt

PP Prt
PA Prt

PX

Prt
AP Prt

AA Prt
AX

Prt
XP Prt

XA Prt
XX

 

 

 
 

 

 

 
 
. (9) 

 

ij
tPr  denotes the transition probability of capital moving from fund style (strategy) i  

to j. For example, XX
tPr  denotes the probability of remaining out of market, and AX

tPr  

measures the probability that a client closes his account with active portfolio 

management and exits the market. The transition matrix is subject to the constraint 

  M t 13 = 13 , i.e.  

 1Pr =∑
j

ij
t .  (10) 

 

The off-diagonal transition probabilities in (9) can be further expressed in terms of the 

probability of staying with the original fund and the conditional probability on leaving. 

Denote by ij
tλ  the probability of moving to fund style j conditional on a definite 

departure from fund i, where ji ≠ . The off-diagonal transition probabilities are given 

by  

 )Pr1(Pr ii
t

ij
t

ij
t −= λ , for ji ≠ , and 1=∑

j

ij
tλ .  (11) 

 

The transition matrix (9) now becomes  
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M t =

Prt
PP 1− λt

PX( )1−Prt
PP( ) λt

PX 1− Prt
PP( )

1− λt
AX( )1−Prt

AA( ) Prt
AA λt

AX 1− Prt
AA( )

(1− λt
XA ) 1− Prt

XX( ) λt
XA 1− Prt

XX( ) Prt
XX

 

 

 
 

 

 

 
 
.  (12) 

 

The use of conditional probabilities ij
tλ  helps to capture the idea of transition from 

one state to another in a more hierarchical fashion. Notice that the use of conditional 

probabilities does not simplify estimation as it involves no parameter reduction; we 

have six free parameters in (9) and also six in (12). This holds true even when the 

number of states increases.  

 

The transition probabilities characterize the Markovian dynamics of investment flows. 

We consider that the probability of capital flowing from one fund management to 

another is not exogenously prearranged, but instead it depends on the relative fund 

performance that is regularly updated with new stock prices. That is, the present study 

endogenizes the transition probabilities to capture how smart money follows the 

winning fund. Endogenizing transition probabilities in fact completes the investment 

cycle by linking stock prices, which are shaped by investment flows, with the 

probabilities that determine the dynamics of investment flows. The following presents 

how the transition probabilities are endogenized.  

 

We consider that the probability of staying with the original fund style i, ii
tPr , reflects 

a measure of self efficiency, and that the conditional probability of moving to 

management style j on abandoning i, ij
tλ , reflects a comparison across new fund 

styles other than i. An illustrative example is given below. Suppose ii
tPr  is a logistic 

function. The transition probabilities are given by  
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)exp(1

11
)exp(1

)exp(Pr i
t

i
t

i
tii

t παπα
πα

+
−=

+
= ;  (13) 

 







+

=
)exp(1

1Pr i
t

ij
t

ij
t πα

λ , where 1=∑
j

ij
tλ  and ji ≠ .  

 

Fund profitability i
tπ , defined by (6), is chosen to be the explanatory variable but with 

a slight modification. Here we use log return instead of simple return for   R t . There 

are two main reasons. First, the sign of i
tπ  will now clearly indicate whether or not a 

loss has occurred. Second, this has the benefit of making the symmetric logistic 

transition function centre at 0.5 when the profitability is neutral. According to (13), 

clearly higher profitability leads to a higher probability of staying.  

 

Profitability is one most straightforward measure of investment performance. Other 

choices include risk-adjusted measures such as efficiency by the Sharpe ratio. Further, 

the choice of explanatory variables in transition probabilities can go beyond the 

performance measures to include factors such as market conditions. Although market 

conditions are not modelled here, the coefficient α  is related to investor sentiments 

that may to some extent reflect market conditions.  

 

We assume 0≥α . The coefficient on profitability, α , measures the smart money’s 

responsiveness to a change in fund profitability. This can be seen by rearranging (13),  

 i

ii

ii

π
α

∂









−
∂

= Pr1
Prln

.  
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ii

ii

Pr1
Pr
−

 is sometimes called the odds of staying with fund style i. α is the multiplier 

on the explanatory variable of the logarithm of the odds of staying. A high α  leads to 

a high probability of staying if the fund management makes positive profits, but also a 

high probability of changing if a loss occurs. Given a change in the fund profitability, 

a high α  implies a dramatic change in transition probabilities. Therefore, a large α  

characterizes the “overreacting” smart money. For example, nervous investors change 

their fund styles or fund managers after one single bad moment. A counterexample is 

given by pension funds. Pension Funds tend to have a relatively lower α  and be 

sticky to their fund managers.  

 

The conditional probability ij
tλ reflects, given a sure change in the fund management, 

how smart money picks up a new fund style j. ij
tλ  can be viewed as a function that 

compares both the benefits and the costs of all fund styles excluding i, since it is 

conditional on a sure leave from i. Let f  be a monotonically increasing function that 

maps +ℜ→ℜ . We define conditional probabilities consistent with the requirement 

(11) by  

 
∑

≠

−
−

=

ik

k
t

k
t

j
t

j
tij

t cf
cf

)(
)(

π
π

λ ,  (14) 

 

where c−π represents the cost-adjusted profits, and ℜ∈c,π . Costs may include 

transaction costs and management fees, and are defined as a constant fraction of 

portfolio returns.  

 








=
=
=

=
.0
.
.

Xjwhen
Pjwhenc
Ajwhenc

c j
t

j
t

j
t π

π
  (15) 
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We further impose 0>> cc  to indicate that low-cost indexing still incurs some 

transaction expenses, and that investors pay higher management fees and 

commissions to invest in actively managed funds than indexing funds. When active 

portfolio management no longer outperforms others, this high entry cost encourages a 

shift to lower-cost passive management or even a market exit.  

 

5. Steady State  
 

Steady state concerns the long-term behaviour of a dynamic system. This section 

solves the steady-state solution for the Markovian dynamics (8) with the transition 

matrix given by (12), under the simplifying assumption of constant transition 

probabilities. That is, the tendency of capital moving from one investment style to 

another is assumed fixed over time. Although unrealistic, this assumption simplifies 

the calculation to a great extent.  

 

In steady state, the Markov chain reaches a stationary distribution and Θ  has the 

ergodic4 property  Θ
' M = Θ' . In addition, since Θ  represents the capital ratios, it must 

satisfy   Θ
' 13 = 1  as given by (7). Thus, the steady-state solution is in fact the 

normalized left5 eigenvector of M , corresponding to the eigenvalue unity. We solve 

for the steady-state solution and it is given by:  

 

                                                 
4 Ergodicity requires the transition matrix to be irreducible and non-periodic. For a more detailed 

discussion on ergodicity, see, for example, Cox and Miller (1965). 
5 The right eigenvector of M corresponding to the eigenvalue unity is 13×1 , since 1313 ×× = 11M as given 

by (8).  
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 ( ))1()1()Pr1)(Pr1(
1 AXAXXAAAXXP λλλ
κ

θ −+−−−= ,  

 ( )PXXAPPXXA λλ
κ

θ )1(1)Pr1)(Pr1(
1

−−−−= , and  (16) 

 ( ))1()1(1)Pr1)(Pr1(
1 AXPXPPAAX λλ
κ

θ −−−−−= , where  

( )( ) ( ) ( ))1)(1(1)Pr1)(Pr1()1(1)Pr1)(Pr1()1()1()Pr1)(Pr1( AXPXPPAAPXXAPPXXAXAXXAAAXX λλλλλλλκ −−−−−+−−−−+−+−−−=

and 1Pr <ii , .,, XAPi =  

 

We now apply the steady-state results to illustrate the limiting cases of the functional 

forms6 given by (13). We consider both the cases when 0=α  and when ∞→α . First, 

0=α  leads to 2
1Pr =ii  and 2Pr

ij
ij λ

= , where 1=∑
j

ijλ  for ji ≠ . The steady-state 

capital ratios now become  

 

 [ ])1()1(1 AXAXXAP λλλκθ −+−= ,  

 [ ]PXXAA λλκθ )1(11 −−= , and  (17) 

 [ ])1()1(11 AXPXX λλκθ −−−= , where  

 )1)(1(1)1(1)1()1( AXPXPXXAAXAXXA λλλλλλλκ −−−+−−+−+−= .  

 

Moreover, it is interesting to observe that if all the conditional probabilities ijλ  are set 

to be 2
1 , the steady-state results (17) even reduce to 3

1=== XAP θθθ . Thus, when 

0=α  and 2
1=ijλ , we will have fixed and equal capital ratios among different fund 

                                                 
6 Notice here we assume constant ijλ  since the steady-state results given by (16) are derived when 

transition probabilities are constant.  
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styles over time. We shall refer to this case as the static benchmark model. This 

extreme case of a small α  is consistent with the discussion before, regarding the 

stickiness (or under-reaction) of investment when α  is low.  

 

On the other hand, when ∞→α , two situations arise. If 0>iπ , then 1Prlim =
∞→

ii

α
 

and 0Prlim =
∞→

ij

α
 for ji ≠ . If instead 0<iπ , then 0Prlim =

∞→

ii

α
 and ijij λ

α
=

∞→
Prlim , 

where 1=∑
j

ijλ  for ji ≠ . However a non-degenerate steady-state solution fails to 

exist in either of these situations, as the limiting transition matrices in both examples 

are reducible and do not satisfy the properties of ergodicity for the existence of a 

steady state of a Markov chain.  

 

6. Comparative Statics 
 

Steady state describes the long-term behaviour of capital movements, but it does not 

tell us how prices respond to capital movements caused by a change in transition 

probabilities. Price formation reflects the dynamics of investment flows characterized 

by transition probabilities. The impact on prices of a change in transition probabilities 

can be understood analytically by comparative statics and numerically by simulation. 

Simulation experiments are carried out in the next section. This section applies the 

analysis of comparative statics to examine the impact on steady-state prices due to the 

following three causes ranging from general to specific: first, a change in transition 

probabilities, second, a change in conditional probabilities on leaving the current state, 

and third, a change in the featuring factor of transition probabilities such as the 

responsiveness to profitability.  
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From market equilibrium condition (1), the price vector can be rewritten as  

 

 
    
Pt = K θ t

i (wt
i

i=1

N

∑ �St
−1) .  (18) 

 

It is convenient to define an 1×S vector    H t
i = wt

i�St
−1 . The price vector can now be 

expressed as  

 
 
Pt = K θ t

i H t
i

i=1

N

∑ .  (19) 

 

Since   wt
i

 represents the portfolio weights on S stocks by strategy i,  H t
i  can be simply 

understood as demands per share, which mainly reflects the strategy’s expectation on 

future returns of different stocks. Suppose prices are in steady state denoted by   P
∗. 

We obtain the following results of comparative statics. Their proofs are given in 

Appendix A.   

 

   

∂P∗

∂Pr sk = Kθ s Hk +
∂Pr sj

∂ Prsk H j

j ≠k
∑

 

 
 

 

 
 , where 1

Pr
Pr

−=∑
≠kj

sk

sj

∂
∂

.  (20) 

 
  

∂ P∗

∂ λsk = Kθ s 1− Prss( ) Hk +
∂λsj

∂λsk H j

j≠ k
∑

 

 
 

 

 
 , where 

∂λsj

∂λsk
j ≠k
∑ = −1.  (21) 

 
  

∂P∗

∂α
= K θ i ∂ Prij

∂α
(H j −H i)

j ≠i
∑

 

 
  

 
 

i
∑  (22)  

 

Suppose now α  is fund-specific so it can be written as iα . (22) now becomes 

 

 
  

∂P∗

∂α s = Kθ s ∂ Pr sj

∂α s
j≠ s
∑ H j −Hs( ).  (23) 
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In the case of logistic transition probabilities (12), we obtain  

 

 
  

∂P∗

∂α s = Kθ s Pr ss(1− Prss)π s Hs − λsjH j

j ≠s
∑

 

 
  

 
 , where 1=∑

≠sj

sj
tλ .  (24) 

 

An application of (20) is given as follows. Suppose now passive indexing becomes a 

popular investment approach, i.e. k passive indexing P= =  in equation (20). What is 

the resulting impact on stock prices? The sign will depend on the expectation of the 

indexed fund on future stock returns. More precisely, its impact on the price of a 

particular stock is positive, if the demand per share by indexers on the stock is greater 

the normalized sum of the demand per share by others, i.e. the second term on the 

RHS of equation (20) is greater than zero. An important implication of (20) is that a 

strategy’s optimism on a particular stock can have a positive impact on the price of 

the stock if the strategy becomes popular.  

 

Furthermore, since     H
X = 0S , an application of (20) suggests that9 the tendency in 

staying out of the market (i.e. k non investing X= − =  in equation 20) always has a 

negative impact on prices. The resulting price falls can be easily understood as a 

consequence of a lack of investments.  

 

Equation (21) tells us how prices are affected by a change in conditional probabilities. 

Its implication is similar to that of (20) by the same reasoning. (22) and (23) are better 

understood by their application (24) with logistic transition probabilities. As discussed 

before, α measures the responsiveness to profitability. Let us consider the case of 

active fund management, i.e. s active fund management A= =  in equation (24). 

Overreacting smart money or a higher α  implies a significant increase in capital 
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inflow when actively managed fund makes profits, i.e. 0>Aπ . By equation (24), this 

results in a positive impact on the price of a particular stock if active management has 

a high expectation on the stock’s returns (i.e. the last term on the RHS of equation 24 

is greater than zero).  

 
 

7. Simulation Experiments and Results Discussion 
 

Computational simulation of market history provides a dynamic perspective on the 

impact of smart money movements. In this section, the pricing process is simulated 

for each trading period. The process can be understood as follows: stock prices 

determine fund profitability that in turn influences the flows of smart money; the 

dynamics of smart money then determines stock prices through market equilibrium, 

and the whole process repeats.  

 

The simulation is based upon the equilibrium price equation (3). The portfolio 

allocations of passive and active fund managements are given by (4) and (5) 

respectively, with m set to be 10. Besides, f is set as an adjusted hyperbolic tangent 

function, 1)2/tanh()( += xxf . To avoid the problem of non-existence of the inverse 

covariance matrix and for the sake of simplicity, we assume an identity matrix for Ωt . 

The dynamics of smart money tΘ  is modelled by the Markov chain (8) with the 

transition matrix illustrated by (12). Further, transition probabilities are endogenized 

as functions of fund profitability and associated expenses, as given by (13), (14) and 

(15). The costs of active and passive fund managements as a fraction of their 

profitability, c  and c , are set to be 0.2 and 0.02 respectively. The pricing process is 

simulated for 2000 trading periods.  
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We consider different levels of investor sentiment in response to changes in fund 

profitability. The results are compared with the static benchmark model, i.e. when 

10,
2

ijα λ= = , where there is no capital movement, and the capital ratios among non-

investment, indexing, and actively managed funds are allocated fixedly and equally. 

The market dynamics resulting from these models are assessed in terms of both the 

Sharpe ratio7 and market “drawdown”. On one hand, it is reasonable in this study to 

use the Sharpe ratio as one criterion to measure the market impact of capital 

movements driven by fund selections. The logic behind is that the investment 

strategies applied to structure fund portfolios are designed based on the mean-variance 

criterion. Thus, the criterion used to assess the resulting market dynamics, namely, the 

Sharpe ratio, is consistent with the criterion that designs the portfolios and hence 

potentially influences the dynamics. On the other hand, the measure of market 

“drawdown” is particularly useful in understanding the downside market movement. 

As pointed out in the introduction, the concern of this paper lies in the potential 

association between the market behaviour and the investment flows driven by fund 

selection and investor sentiment. Specifically, the interest rests on how these return-

chasing investment flows may contribute to extreme market events such as large price 

falls. On this regard, “drawdown” is a highly relevant measure of the resulting market 

dynamics in this study. In its simplest term, “drawdown” is a measure that quantifies 

uninterrupted falls in security prices. The benefits of using the measure of drawdown 

to assess the market impact have been discussed in the introduction. Below it is 

provided the definition of market drawdown. This study will consider three aspects of 

the drawdown measure, namely the duration, the depth, and the number of drawdowns, 

                                                 
7 The author acknowledges the suggestion made by Mark Salmon and Shaun Bond that the standard 

Sharpe ratio could be a reasonable alternative measure of the resulting market dynamics in this paper.  
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in both indexing and actively managed accounts.  

 

For a price series tp , a drawdown is simply defined as a sequence of dd
dttp +

=
0

0
}{  for 

1>d , where all the prices of the sequence fall down while there exists a price rise 

both immediately before and after the sequence; d  is the duration or the length of the 

drawdown. In terms of a returns series 
1−

=
t

t
t p

pr , a drawdown can be equivalently 

defined as a sequence of dd
dttr
+

+=
0

0 1}{  for d > 1, where 1<tr  for ,10 += dt ,20 +d .., 

dd +0 , while 1
0

>dr  and 110
>++ddr . Without loss of generality, we assume 00 =d . 

The absolute depth of a drawdown is calculated by the difference between 0p  and dp , 

i.e. dpp −0 , and the relative depth by the ratio 
0

0

p
ppD d

d
−= . In this study, we 

compute the relative depth, dD , that relates to the beginning position of a drawdown. 

dD  is calculated conditional on the preceding local peak, so that a drawdown is 

considered less severe if its preceding local peak is comparatively high. The relative 

depth of a drawdown can also be expressed in terms of returns by ∏−
=

d

t
tr

1
1 . Finally, let 

Nd  denote the number of drawdowns in a series. Note that Nd  is bounded above by 

( ) 21+T  for a series of T trading periods. Table 1 reports the results of drawdown8 

calculated from index (or market) returns and also active investment returns. Figure 1 

provides the distributions of the sizes of the drawdown.   

 

 

                                                 
8 The results of drawdown are calculated from portfolio returns tπ  instead of simple returns tr . As 

tπ  given by (6) is just the weighted return in accordance with the underlying portfolio weights, the 
computation of the number, the duration, and the sizes of drawdown discussed above will still apply.  
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Table 1 Drawdown results of the investment returns from the market index fund and 
actively managed fund.  
 

 
 

 Number of 
Period Loss  
(Frequency) 

Number of 
Drawdown 
(Frequency) 

Average 
Duration of 
Drawdown 

Average 
Depth of 

Drawdown 

Maximum 
Depth of 

Drawdown 
Index 806  

(0.3224) 
615  

(0.246) 
1.31057 0.0390024 0.18136 Fixed Θ , 

31=== XAP θθθ  Active 1694 
 (0.6776) 

614  
(0.2456) 

2.75896 0.133933 0.677253 

Index 791  
(0.3164) 

622  
(0.2488) 

1.2717 0.0289949 0.404647 
ttt M''

1 Θ=Θ +  

tPr (α = 1) Active 1709  
(0.6836) 

608  
(0.2432) 

2.81086 0.11926 0.618233 

Index 1139  
(0.4556) 

395  
(0.158) 

2.88354 0.187774 0.381794 
ttt M''

1 Θ=Θ +  

tPr (α = 7) Active 1351  
(0.5404) 

388  
(0.1552) 

3.48196 0.352543 0.648755 

Index 1083  
(0.4332) 

363  
(0.1452) 

2.98347 0.463669 0.556648 
ttt M''

1 Θ=Θ +  

tPr (α = 11) Active 1222  
(0.4888) 

359  
(0.1436) 

3.4039 0.573109 0.692364 

Index 826  
(0.3304) 

329  
(0.1316) 

2.51064 0.556938 0.653068 
ttt M''

1 Θ=Θ +  

tPr (α = 100) Active 1110  
(0.444) 

326  
(0.1304) 

3.40491 0.598585 0.777556 
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(e)  

Figure 1 The distributions of the relative sizes of drawdown. 
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A number of patterns can be found from the results in Table 1 and Figure 1. These 

patterns can lead to rather different implications on investor sentiment. First, 

comparing only the results of varying levels of α  excluding the static benchmark 

model, we find that overall the number of drawdown decreases but the average 

duration of drawdown increases as α  gets larger. Furthermore, the average depth of 

drawdown also increases with α . The results suggest that overreaction aggravates 

both the duration and the size of drawdown in investment returns in the market index 

and active managed accounts. We may then tend to think that the static benchmark 

model with no investment movements would have smaller measures of drawdown. 

Surprisingly, the static model in fact leads to a larger drawdown size in average than 

the dynamic model with a small α . This observation implies the existence of a 

stabilizing force when there is a limited degree of capital movement.  

 

The Sharpe ratios of the index fund returns and the actively managed fund returns, 

assuming a zero risk-free rate, are reported in Table 2. As the Sharpe ratio represents 

excess return per unit risk, it can also be regarded as a reward-to-risk efficiency 

measure. It is noticeable from the patterns of the reported Sharpe ratios in Table 2 that 

the simulated market characterized with a small degree of capital movement ( 1α = ) 

has the highest level of reward-to-risk efficiency for both index and actively managed 

funds. The level of the reward-to-risk efficiency is lower in the static benchmark 

model where capital ratios remain equal and fixed among the set of possible 

investments. Moreover, the efficiency level decreases persistently as the parameter 

that reflects the degree of investor sensitivity to fund profitability increases. This 

efficiency decline is evident for both index and actively managed accounts.  
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The crucial question arises here is whether the results obtained using the two different 

measures, namely, “drawdown” and the Sharpe-ratio efficiency, will have the same 

implications or implications compatible with each other. Recall that there are two 

main findings from the drawdown results. First, investor overreaction reflected by 

speculative and drastic capital movement is found to have a significant contribution to 

large market falls. Second, although the destabilizing impact of investor overreaction 

is observed, investment movement and capital liquidity to some extent as opposed to 

the static case of capital immobility can in fact be stabilizing. Now, the first 

drawdown finding suggests a tendency for higher downside risk in the market 

characterized by overreacting investors chasing winning funds. As the risk gets higher, 

the reward-to-risk efficiency declines. Thus, the observation of a persistent decrease 

in the reward-to-risk efficiency as the level of overreaction exacerbates is in 

accordance with the first major finding from the drawdown results. On the other hand, 

the Sharpe-type efficiency level is indeed higher in the model with the smallest α  

than that in the static benchmark model. By the same token, this higher level of risk-

adjusted efficiency is attributable to the stabilizing effect of capital liquidity and 

hence lower risk. Again, this efficiency increase is in line with the second major 

finding from drawdown results. Therefore, in summary, the overall pattern observed 

in the level of the reward-to-risk efficiency is consistent with the previous 

observations of downside market behaviour presented by the drawdown results.  

 

There is an interesting observation that the Sharpe ratios of the actively managed fund 

are slightly lower than their counterparts of the index fund. The index fund 

outperforms the actively managed fund in terms of the reward-to-risk efficiency 

measure. This comparison of their risk-adjusted performance is consistent with one 

observation given in Table 1 that the number of period loss of the actively managed 
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fund always exceeds its counterpart of the index fund. Although it is difficult to 

provide a rigorous, analytical explanation to the observed outperformance of the index 

fund both in terms of loss period and risk-adjusted reward, the outcomes may be 

considered as attributable to active fund management being inherently more risky.   

 

In Table 2 it is also reported the means and variances of both index returns and active 

portfolio returns, together with the correlation coefficients between these two return 

series. Although overall it is seen that the mean returns of both management 

strategies9 slightly increase with the investor sensitivity level α , their variances are 

found to exhibit an unproportionally large increase. This implies that overreaction 

adversely induces a volatile market. The observation of high volatility in the case of 

overreacting smart money is consistent with the results found in market drawdown.  

 

Table 2  Summary statistics of the mean, variance, Sharpe ratio, and correlation of 
index returns and active managed fund returns.  
 

 
 

 Mean Variance              Sharpe 
                             Ratio 

Correlation 
Coefficient 

Index 1.02608 0.00282958           19.29 Fixed Θ , 
31=== XAP θθθ  Active 0.973918 0.00282958           18.31 

-1 

Index 1.01962 0.00179315           24.08 
ttt M''

1 Θ=Θ +  

tPr (α = 1 ) 
Active 0.976985 0.00241346           19.89 

-0.990231 

Index 1.02767 0.0114034              9.62 
ttt M''

1 Θ=Θ +  

tPr (α = 7) 
Active 0.975898 0.0145883              8.08 

0.594797 

Index 1.04795 0.058714                4.32 
ttt M''

1 Θ=Θ +  

tPr (α = 11) 
Active 1.00201 0.0591932              4.12 

0.921535 

Index 1.06738 0.0890357              3.58 
ttt M''

1 Θ=Θ +  

tPr (α = 100) 
Active 1.04008 0.092746                3.42 

0.888454 

                                                 
9 In the model, the mean index return exceeds the mean active investment return by an insignificant 

amount. We believe that this observation is highly model-specific and is largely attributed to the 

employed active trading strategy.  
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Now we turn to the discussion of the correlation outcomes. The profitability of these 

two investment strategies moves in the opposite directions in the benchmark model 

and also when α  is low, i.e. when clients’ money is sticky to the original investments. 

The reason to the observed negative return correlation can be grasped intuitively that 

when there is no source of investment inflow and the market capital size remains 

fixed, one strategy can only be profitable at the cost of the other. In the case of the 

static benchmark model, there is no investment entry or exit and the market capital 

ratio always remains 3
2 . Appendix 4B provides a proof that index returns and active 

investment returns sum to a constant, by imposing the constraint of fixed and equal 

capital ratios among different investment strategies. Since the sum of these two 

returns at each time period is fixed under certain assumptions, it becomes clear that 

one strategy is profitable at the expense of the other, and so their profitability moves 

in the reverse directions as shown by their correlation coefficient. The sum of these 

two returns remaining fixed also explains why their variances are virtually the same 

by a straightforward proof.  

 

The return correlation however becomes positive when α  increases. This observation 

implies a counter-intuitive situation when active and passive fund managements can 

be simultaneously profitable. Considering the price mechanism, this is not as 

surprising as it seems. In the presence of overreacting smart money, a profitable active 

fund management quickly attracts a vast investment inflow from not only index 

believers but also non-market participants. This pushes up the prices of the stocks on 

which active fund management puts more weights, and hence the overall market index 

price. Here the investment inflow from out of market ( XAPr ) is crucial. If the 

investment inflow into active fund management comes merely from passive 
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management, the weakened passive investment is likely to offset the push-up effect on 

the market index by the strong active investment.  

 

The most straightforward example is found in bull markets, where various active fund 

managements can be profitable at the same time when the market index is soaring10. 

This can be grasped by that market conditions influence investor sentiments, and in 

particular, bull markets trigger massive new investment inflows that boost 

profitability. Even in the rare case when passive indexing has no investment inflow, 

the market price can still go up due to the push-up effect of a strong active investment.  

 

8. Concluding Remarks and Discussions  
 

This paper develops a Markovian model to capture the profit-chasing behaviour of 

“smart money” between two major fund management styles, namely, index fund and 

active portfolio fund. Market capital inflow and outflow are also considered in the 

model by allowing non-participation as one investment choice. In seeking the long-

term capital allocations, the steady-state capital ratios among different investment 

strategies are derived under some simplifying assumption on transition probabilities. 

Both the analysis of comparative statics and computational simulation are applied. 

The paper studies the resulting market drawdown and reward-to-risk efficiency in this 

market characterized by the Markovian dynamics of smart money.  

 

                                                 
10 For instance, during the bull market of 1998 – 1999, the Fidelity aggressive growth fund achieved 

returns of 190%.  
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One major finding suggests that market drawdown can be significantly attributed to 

overreacting smart money drastically moving from one fund style to another. Both the 

duration and the size of drawdown are considered in this study. However, it is also 

observed that capital liquidity and investment movement to some extent, as opposed 

to capital immobility, can in fact be stabilizing to the market. Moreover, using the 

criterion of the Sharpe ratio, it is demonstrated that the overall pattern observed in the 

level of this reward-to-risk efficiency consistently supports the observations of 

downside market behaviour presented by the drawdown results.  

 

This paper also finds that when money is sensitive to fund performance, profitable 

active fund management is likely to trigger vast capital inflow that pushes up the asset 

prices of active portfolios and hence the overall index prices, given that there is no 

offsetting effect from possibly weakened passive investment. Therefore, performance 

sensitivity and new capital inflow make it possible that two much debated portfolio 

management styles, passive indexing and active fund management, can be 

simultaneously profitable. By the same token, a rapid investment withdraw triggered 

by overreacting investors in response to either bad news or underperformance can 

lead to active fund management being just as devastating as market index. On the 

contrary, if money is insensitive and investment capital remains immobile, the model 

is in fact a typical zero-sum game where one strategy will be profitable at the cost of 

the other.  

 

Is the returns-chasing behaviour enabled by market liquidity socially desirable? 

Several implications can be drawn from the results. The returns-chasing behaviour 

induces a natural selection of investment funds, so that ill-performing funds are 

liquidated or merged while outperforming ones accumulate even more capital. From 
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the viewpoint of seeking a valid investment tool, the increased competition level may 

enhance the effectiveness of asset managements. Besides, some degree of liquidity is 

desirable since it may work as a stabilizing force to the market as the results suggest. 

However, there are tradeoffs as well as benefits. The market with overreacting smart 

money chasing past winners and abandoning poor performing funds implies a higher 

downside risk. Particularly in bear markets, vast investment withdraws in a hasty 

fashion can exacerbate the already worsening market condition.  

 

It is discussed in the introduction that the relevance and association between this 

study’s context and international capital flows. The finding of this paper provides an 

alternative perspective to conventional knowledge regarding capital movement. It is 

established wisdom in mainstream economics that countries can prosper by opening 

up their economies to international trade and capital flows. There are many 

advantages that international capital can offer to a country; see e.g. Fernandez-Arias 

and Montiel (1996). The positive effects can be significant and they include lowering 

the cost of capital to creditworthy firms, complementing domestic savings to enable 

smooth consumption over time, and financing investment. Inflows of capital can 

stimulate economic growth and bring about convergence between the developing and 

developed world.  

 

However, this perspective has been challenged by the recent crises in capital markets. 

Short term capital flows can on the other hand pose a number of potential threats to a 

country’s macroeconomic health or even become a source of instability. Negative 

effects must be weighed against the benefits of capital account liberalization. For 

example, as discussed in the introduction, the level of portfolio flows has increased 

significantly in recent years. Portfolio flows across national boundaries are designed 
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for greater risk diversification in world financial markets. However cyclical market 

condition change can influence investor sentiment which in turn poses a risk of sharp 

capital flow reversals and destabilization of the local economy. In countries with 

vulnerable financial sectors, capital movements purely driven by speculative purposes 

can have severely destabilizing effects.  

 

On the other hand, in most countries capital inflows are often associated with 

widening current account deficits, largely owing to an increase in national investment 

and a decrease in national saving. Although economic activities may expand and GDP 

may grow faster, key macroeconomic variables can be pushed away from their long 

term equilibrium leading to weakened macroeconomic fundamentals at unsustainable 

levels. Calvo and Reinhart (1999) argued that if this circumstance is followed by 

abrupt capital flow reversals, there can be serious consequences of output collapses 

and currency and banking sector crises as what happened in several emerging markets 

throughout 1990s. The Institute of International Finance reports that the five hardest 

affected economies by the Asia Crisis, namely South Korea, Indonesia, Malaysia, 

Thailand, and Philippines, have experienced a reversal of capital movement from an 

inflow of 93 billion USD in 1996 to an estimated outflow of 12 billion USD in 1997. 

The total shift was 105 billion USD, a figure more than 10 percent of these 

economies’ combined, pre-crisis GDP. This loss in capital account sustainability was 

connected with the fact that a large portion of these flows was short term in nature and 

can be easily withdrawn. With reference to the 1994 Mexican crisis, Edwards (1998) 

points out that the role played by large capital inflows, which at their peak surpassed 9 

percent of Mexico’s GDP, has been at the centre of almost every post mortem of the 

Mexican crisis.  
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What can be done to avoid or reduce the likelihood of problems associated with large 

volumes of short term capital flows? Short term capital controls can be implemented 

through mechanisms such as imposing tax on short term money or eliminating policy 

distortion that encourages speculative flows in the first place. Quoting Krugman 

(1998) these mechanisms are “curfews on capital flight” that should work to control 

short term hot money and encourage healthy and long term investment. For instance, 

quantitative restrictions were imposed in Malaysia in 1994 to prohibit inflows or 

outflows of funds. Another example was given by Chile. Chile has imposed tax-based 

restrictions, such as a tax on short-maturity loans, which make capital transfers more 

costly. Blondal and Christiansen (1999) found that inflow restrictions as a more 

commonly used measure is far more efficient in influencing capital movements than 

measures that are designed to restrain outflows.  

 

There is certainly broad agreement that capital market liberalization is valuable in the 

long run, but in the short run it may be better for economies to follow more prudent 

liberalizations until they have reached a higher state of development. Economists such 

as Eichengreen (2000) argue that although it is important to avoid monetary and fiscal 

policy excesses, an economy should fulfil a set of conditions before capital 

liberalization is completed. These conditions should work to reduce the economy’s 

vulnerability on volatile capital flows. One crucial need in banking sector is to 

regulate the local lending practices of domestic banks to ensure prudent and effective 

credit-risk management. Another option is to reduce the reliance on short term lending. 

McKinnon (1991) argues that capital account liberalization should be the last step, 

after consolidation of other liberalizing measures and the strengthening of the 

domestic financial systems. Strengthening domestic financial systems can be 

implemented by reforms that create more transparent systems of corporate governance, 



 34

robust financial infrastructures, and sound and stable policies for crisis prevention. 

Financial reforms may also help to enhance investor confidence for the long term and 

hence the economy’s stabilization. Lastly but not leastly, these arguments in the 

context of international money flows can be mostly applied to capital movements in 

the fund market. Healthy markets should always be achieved before supporting free 

capital mobility. 
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Appendix A 
 

Proof A 

Suppose prices are in steady state and so is the ecology of capital ratios. Express the 

ergodic property for a steady-state ecology,  Θ
' = Θ' M , in scalars,  

 

 θ j = θ i Pr ij

i
∑ .  (A.1) 

 

From (19) and (A.1), the steady-state price vector can be written as 

 

 
  
P∗ = K θ i Pr ij H j

i
∑

j
∑ .  (A.2) 

 

By separating whether i = s or kj = , (A.2) can be further decomposed into 

 

   
P∗ = K θs Pr sk Hk + θ i Pr ik Hk

i≠ s
∑ + θs Prsj H j

j≠ k
∑ + θ i Pr ij H j

i≠ s
∑

j≠ k
∑ 

 
 

 
 
 

.  (A.3) 

 

From the equivalent of constraint (10), Pr sj

j
∑ =1, it is easy to obtain 1

Pr
Pr

−=∑
≠kj

sk

sj

∂
∂

.  

Also we know that 0
Pr
Pr

=
≠ si

sk

ij

∂
∂

. Therefore, by partial differentiation of the steady-

state price given by (A.3) with respect to the transition probability, we obtain 

 

   

∂P∗

∂Pr sk = Kθ s Hk +
∂Pr sj

∂ Prsk H j

j ≠k
∑

 

 
 

 

 
 , where 1

Pr
Pr

−=∑
≠kj

sk

sj

∂
∂

. 
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Proof B 

 

We first decompose the steady state price (A.2) into four parts.  

 

 

  

P∗ = K θs Pr ss Hs + θs Prsk Hk

k ≠s
+ θs Prsj H j

j≠ s
j≠ k

∑ + θ i Pr ij H j

i≠s
∑

j
∑

 
 
 

  

 
 
 

  
  (A.4) 

 

Recall that ijλ  is not defined when ji = , and that the diagonal entries in the transition 

probability matrix  M  have no ijλ , thus  

 0
Pr

=sk

ss

∂λ
∂

.  

Also we know that ijPr  is independent of λsk  if si ≠ , thus  

 

 0
Pr

=
≠ si

sk

ij

∂λ
∂

.  

 

The partial differentiation of (A.4) with respect to the conditional transition 

probability hence yields 

 

 

  

∂P∗

∂λsk = K θs ∂ Prsk

∂λsk Hk + θs ∂ Pr sj

∂λsk H j

j≠ s
j≠ k

∑
 
 
 

  

 
 
 

  
.  (A.5) 
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Since the off-diagonal transition probabilities are defined by )Pr1(Pr sssk

sk

sk −=
≠

λ , it 

is straightforward that  

 ss

ks

sk

sk

Pr1
Pr

−=
≠

∂λ
∂

.  

 

By chain rule, sk

sj
ss

sk

sj

sj

sj

kj
sj

sk

sj

∂λ
∂λ

∂λ
∂λ

∂λ
∂

∂λ
∂

)Pr1(
PrPr

−==

≠
≠

.  

 

Also, from (11), 1=∑
j

sjλ , it is easy to show that 
∂λsj

∂λsk
j ≠k
∑ = −1.  

 

Therefore, (A.5) reduces to  

 

 
  

∂ P∗

∂ λsk = Kθ s 1− Prss( ) Hk +
∂λsj

∂λsk H j

j≠ k
∑

 

 
 

 

 
 , where 

∂λsj

∂λsk
j ≠k
∑ = −1.  
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Proof C1 

 

Suppose )(PrPr αijij = .  

From the constraint (10), we know that 1)(Pr =∑
j

ij α , and hence 0)(Pr =∑
j

ij

∂α
α∂ .  

Separating the diagonal entries from the off-diagonal ones yields  

 

 ∑
≠

−=
ij

ijii

∂α
α∂

∂α
α∂ )(Pr)(Pr .  (A.6) 

 

From (A.2), we can obtain  

  

∂P∗

∂α
= K θ i ∂Pr ij

∂α
H j

j
∑

i
∑ Pr Prii ij

i i i j

i j i
K ∂ ∂θ θ

∂α ∂α≠

 
= + 

 
∑ ∑H H .  (A.7) 

 

Replacing (A.6) into (A.7) leads to   

 
  

∂P∗

∂α
= K θ i ∂ Prij

∂α
(H j −H i)

j ≠i
∑

 

 
  

 
 

i
∑ .  

 

Proof C2 

Now, suppose )(PrPr iijij α= , and si αα ≠  if si ≠ . Thus, 0Pr =
≠ si

s

ij

∂α
∂ .  

 

Again from (A.2), we calculate the following.  

 

 
  

∂P∗

∂α s = K θ i ∂Pr ij

∂α s H j

i
∑

j
∑  

     
  
= K θ s ∂Pr ss

∂α s Hs + θs ∂ Prsj

∂α s H j

j ≠s
∑ + θ i ∂ Prij

∂α s H j

i≠ s
∑

j
∑ 

 
 

 
 
 
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= K θ s ∂Pr ss

∂α s Hs + θs ∂ Prsj

∂α s H j

j ≠s
∑ 

 
 

 
 
 

 

 

From the same reasoning as (A.6), we know  

 

 ∑
≠

−=
sj

s

sj

s

ss

∂α
∂

∂α
∂ PrPr .  

 

It therefore follows that  

 
  

∂P∗

∂α s = Kθ s ∂ Pr sj

∂α s
j≠ s
∑ H j −Hs( ).  (A.8) 

 

An example is given below with the logistic transition probabilities (13).  

 

We first obtain  

 
∂Pr sj

∂α s
j ≠s

= −λsj Pr ss(1− Prss )π s .  

From (A.8),  

 

 
  

∂P∗

∂α s = Kθ s ∂ Pr sj

∂α s
j≠ s
∑ H j −Hs( )

 
= Kθ s Pr ss(1−Pr ss)π s λsj

j ≠s
∑ Hs −H j( ).  

 

Since 1=∑
≠ sj

sjλ  as given by (11), it follows that  

 

 
  

∂P∗

∂α s = Kθ s Pr ss(1− Prss)π s Hs − λsjH j

j ≠s
∑

 

 
  

 
 , where 1=∑

≠sj

sj
tλ .  
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Appendix B 
 

Recall that market equilibrium at time t is given by (1) as  

 

 
   
St�Pt = K θ t

iw t
i

i=1

N

∑ ,  

 

where   Pt ,   St , and  wt
i  are S-dimensional vectors of prices, outstanding shares, and 

portfolio weights of strategy i on S stocks. The scalars K and i
tθ  are the total capital 

size and the capital ratio allocated to investment fund i.  

 

Rearrange the equilibrium condition (1) to obtain the price vector at time t 

 

 
   
Pt = K θ t

iw t
i

i=1

N

∑ �St
−1 .  (B.1) 

 

The static benchmark model assumes fixed and equal capital ratios among different 

investment funds. Imposing this assumption together with the simplified assumption 

of a constant number of outstanding shares, (B.1) becomes  

    
Pt = Kθ S−1� wt

i

i=1

N

∑ 

 
  

 
 , and similarly,  

 
    
Pt−1 = Kθ S−1� w t−1

i

i=1

N

∑ 

 
  

 
 .  

 

Therefore, returns defined as the price ratios are given by the 1×S  vector  

 
    
R t = Pt�Pt−1

−1 = wt
i

i=1

N

∑
 

 
  

 
 � w t−1

i

i=1

N

∑
 

 
  

 
 

−1

.  (B.2) 
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Following the model, consider three investment strategies, i.e. three states, 

XAPi and,,= . Notice that   wt
X = 0S  and  wt

i ' 1S =1 for APi ,= . Let   1S  denote an 

1×S  vector of ones. The return vector (B.2) then becomes  

 

 
    R t = w t

P + w t
A( )� w t−1

P + w t−1
A( )−1

.  

 

Fund profitability is measured by its portfolio return. Portfolio return is a scalar 

defined by (6) and is calculated as the summation of stock returns multiplied by the 

corresponding portfolio weights. The sum of index return and active investment return 

is then given by  

  π t
P + π t

A = (wt −1
P )'R t + (w t−1

A )'R t = (w t−1
P + w t−1

A )'R t  

 
    
= (w t−1

P + w t−1
A )' wt

P + wt
A( )� wt −1

P + wt −1
A( )−1{ } 

  =
′ 1 S wt

P + wt
A( ).  

 

Since   wt
i ' 1S =1 for APi ,= , thus  

 

   π t
P + π t

A = ′ 1 S wt
P + ′ 1 S w t

A = 2.  

 

Therefore, the proof has shown that under the restriction of fixed and equal capital 

ratios among different investment strategies and also the assumption of a constant 

number of outstanding stock shares, the sum of index return and active investment 

return is a constant.  
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