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Abstract 
 

We use theoretical modeling and simulation to analyze price discovery for equity shares 
in a divergent expectations environment where k percent of participants have a high 
evaluation, (1-k) have a low evaluation, and k is not known by agents before they come to 
the market to trade.  Participants can change their evaluations when, from the order flow 
they observe, they infer each other’s evaluations.  We show that, in this environment, 
price discovery is a path dependent process that leads to multiple equilibria.  The analysis 
yields important implications for price volatility, technical analysis, behavioral finance, 
and market structure. 
 
Key words: Price discovery, divergent expectations, Polya Process, adaptive valuation, 
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Introduction 
 

A financial market is an arena where the diverse trading desires of a set of 

participants are harmonized as orders are placed, prices established, and trades made.  As 

trading progresses, orders are specified based on participants’ desires to trade and their 

expectations of the prices at which trades will be made.  The realized transaction prices, 

in turn, are based on the orders that have been submitted.  This interplay between 

expected and realized prices is of particular interest when traders have diverging 

expectations concerning a security and adjust their evaluations on the basis of the 

revealed behavior of others (i.e., when participants have adaptive evaluations). 

We view the participants in such an environment as operating within the context 

of a network.  The paper focuses on the dynamic process of price discovery in the 

network environment characterized by divergent expectations and adaptive valuations.  It 

fits into a more general Polya-type model characterized by increasing returns, path 

dependency, and multiple equilibria.1  For instance, consider a set of participants who 

sequentially express their preferences for one of two alternatives, A and B.  With 

increasing returns, as the percentage of the population that selects one of the two options 

over the other increases, more participants who would otherwise have selected the 

relatively unsuccessful option switch and choose the increasingly successful alternative.  

Consequently, the early chance arrival of more participants selecting A can result in A 

becoming dominant in the market, or the early chance arrival of more participants 

selecting B can result in B becoming dominant in the market.  This means that the 

process is path dependent and that multiple equilibria exist. 

“A vs. B” can represent a spectrum of alternatives such as different technologies 

(e.g., VCRs vs. Beta Max), different locations for an industry (e.g., Silicone Valley vs. 

elsewhere), or different valuations for a stock (e.g., $45 vs. $55).2  We focus on the latter.   

Just as chance, early events can result in VCRs taking the market away from Beta Max 

and in high tech firms clustering around Silicone Valley instead of elsewhere, a stock’s 

price can settle closer to 45 or closer to 55 simply because of the chance arrival of early 

events.  In the case of technology, increasing returns are explained by economies of 

standardization.  With regard to location, increasing returns are attributable to the 

                                                 
1 See Arthur (1994). 
 
2 The VCR vs Beta Max and Silicone Valley examples were suggested by Arthur (1994). 
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economic benefits of spatial clustering for firms in the same industry.  For share price, 

increasing returns are due to the validation provided by more participants agreeing on a 

price.3  Our analysis of increasing returns and path dependency suggests that short-term 

(e.g., intra-day) price volatility is greater when, all else constant, participant expectations 

are more divergent (this would not be the case in a frictionless trading environment).  

This short-term volatility analysis has implications for longer run price behavior.  For 

instance, the genesis of the origins of longer term bubbles and crashes could lie, in part at 

least, in a price discovery process that starts on an event-to-event basis.  In addition, our 

analysis interfaces with various issues concerning technical analysis, behavioral finance, 

and market structure.  

Much financial modeling is based on the assumption that participants have 

homogeneous expectations. While homogeneity is commonly assumed for purposes of 

tractability, it is also widely accepted as being reasonable (what one rational person 

would conclude from an information set, all rational people should conclude).  We 

alternatively relax the stringent assumption of homogeneity and allow for divergent 

expectations.4  We do so in light of the enormous size and complexity of the information 

set that characterizes real world equity markets, the imprecision of the tools available to 

analyze share values, the production of private information by agents, the observation 

that analyst recommendations commonly differ, and in recognition of the prevalence of 

short selling in the marketplace.5   

The divergence of expectations has major implications for price discovery.  Price 

discovery, which is relatively trivial under homogeneous expectations, becomes a 
                                                 
3  The use of a daily volume weighted average price (VWAP) as a performance benchmark suggests the 
importance institutional participants place on trading at a validated price. 
 
4  See Miller (1977) and Harrison and Kreps (1978) for earlier discussions of heterogeneous expectations in 
a static context.  More recently, Scheinkman and Xiong (2003) have presented a dynamic model that 
explicitly addresses heterogeneous expectations. 
 
5 While it is outside the scope of this paper to infer the range of individual assessments, a back of the 
envelope calculation suggests that it could be quite large.  To illustrate, consider a simple dividend discount 
model, and assume that in one year a firm will start paying a dividend of $1.35 a year and that its equity 
cost of capital is 10.00%.  Further assume that one analyst expects a 7.00% annual growth rate, that a 
second analyst expects a 7.545% growth rate and that, accordingly, the first analyst values the shares at $45 
and the second analyst values the shares at $55.   The example shows how a disparity of 55 basis points for 
the growth rate can translate into a $10 disparity for share value in the price range we have considered.  
With respect to price, the difference is very large, but with respect to a growth rate, the difference is very 
small.  Is any analyst able to assess a growth rate with 55 basis points precision?  Alternatively viewed, a 
firm with annual earnings of $2 will have a share value of $45 if its price/earnings multiple is 22.5, and a 
share value of $55 if its P/E multiple is 27.5, a 22% difference.  Can a P/E multiple be assessed with  22% 
precision?  
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complex, dynamic process when the homogeneity assumption is relaxed.  The dynamic 

complexity itself can produce what might be referred to as “price discovery noise.”  

Formal theoretical analyses of price discovery in a divergent expectations environment 

are sparse, however.  In an earlier paper, Ho, Schwartz and Whitcomb (HSW, 1985), by 

modeling price determination under transaction costs and transaction price uncertainty, 

showed that a theoretically desirable equilibrium will generally not be obtained.6  Handa 

and Schwartz (1996) analyzed the price paths that can be traced out in an HSW 

environment.  Neither of these papers took account of divergent expectations, however, 

and, consequently, their insights into price discovery were limited.7

Our analysis builds on the divergent expectations, quote setting model developed 

by Handa, Schwartz and Tiwari (HST, 2003), who relate bid and ask prices to the 

proportion of bullish vs bearish traders.8  HST provide a simplified setting where k 

percent of participants assign a relatively high valuation to shares (VH), and 1-k assign a 

relatively low valuation to shares (VL).  They show how bid and ask prices are set in a 

continuous limit order book market when VH, VL, and k are all common knowledge.   

But, in reality, k is not observable until participants come forward and trade.  Therefore, 

we relax the assumption that k is known.  In our formulation, k discovery and price 

discovery are synonymous.  The dynamic price discovery process may be viewed as 

starting at any daily opening or, more generally, following any news event, either 

overnight or within the trading day. 

Once divergent expectations are allowed for, the way is opened for investors to 

have adaptive valuations.  That is, an agent may change his or her valuation upon 

knowing the valuation of others.  In our stylized model, we take the revealed proportion 

of buyers and sellers (HST’s k) to be the conduit through which participants 

communicate their valuations to each other.  Specifically, as more buyers (sellers) arrive 

at the market, the aggregate mood across all participants becomes more bullish (bearish). 

In our formulation, the only news that occurs as trading progresses is information about 
                                                 
6 In HSW (1985), two conditions must be satisfied to achieve an equilbirum price: participants must be 
symmetrically distributed with respect to their desires to hold shares of a risky asset, and their expectations 
of the market clearing price must be accurate. 
 
7 Others have followed a substantially different approach that considers price discovery when order flow is 
distributed over multiple fragmented but integrated markets.  See Yan and Zvot (2004) for a recent 
discussion and further references. 
  
8 Our formulation draws from HST (2003) and is related to Foucault (1999) who also assumes that 
investors’ share valuations can differ. 
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the mood of the market as reflected by the proportion of participants who have revealed 

themselves to be buyers or sellers. 

An analysis of the divergent expectations, adaptive valuations environment yields 

insights that are not readily derived from models based on the assumption of 

homogeneous expectations.  If participants submit their orders to a single price call 

auction, it is trivial to show that price is VH if k > 0.5, that  price is VL if  k < 0.5, and that 

it is indeterminant  in the range from VL to VH if k = 0.5.9  Consequently, a small change 

of k in the neighborhood of 0.5 can have a sizable effect on price.  In the HST continuous 

limit order book framework that we use in the current paper, price depends on k 

throughout the range from VL to VH.  HST have shown that, as k goes to an extreme of 

either 0 or 1, the bid and the ask quotes go to VL or to VH, respectively and, as they do, 

that the spread tightens (the spread is at a maximum when k is 0.5).  We show, when k is 

not known and participants have adaptive valuations, that a security’s price is particularly 

sensitive to “small” early events (whether the first arriving participants are bullish or 

bearish) and, consequently, that price discovery is a multiple equilibria, path dependent 

process. 

Our analysis of divergent expectations contrasts in the following way with the 

asymmetric information models of, e.g., Copeland and Galai (1983) and Glosten and 

Milgrom (1985).  Under asymmetric information, one group of participants has 

information that the others do not possess and, when trading with the uninformed, the 

informed profit from their information.  Expectations are homogeneous within each of 

the two groups (the informed and the uninformed).  After the information of the informed 

becomes common knowledge, expectations are homogenous across all participants. 

In contrast, our analysis is structured to be neutral between the group with the 

relatively high asset valuation (VH) and the group with the relatively low valuation (VL).  

All participants share identical initial estimates of k, say k0.  As trading progresses, the 

movement of price between VH and VL depends on the chance sequence of the order flow 

(particularly the early order arrivals).  Throughout the trading session, it is not possible to 

identify one group as being better informed than the other.  Only the relatively distant 

future will reveal which group has assessed the information set more accurately. 

                                                 
9 As we show in Section II.A., the solution differs with adaptive valuations.  
 



 7

Our paper is organized as follows.  Section I sets forth the behavioristic model.  In 

so doing, we summarize HST (2003), present our behavioral assumptions, our 

assumptions about individual choice, the probabilistic assumptions, and the analysis of 

group dynamics.  Section II then focuses on price equilibria.  Section III presents the 

simulation analysis we have used to examine the multiple equilibria yielded by our 

formulation, and the results of our simulation tests.  We discuss two extensions of the 

model in Section IV and, in Section V, consider various implications of the analysis.  

Section VI is a brief summary. 

 

I.  Behavioristic Model 
 

A. The HST Framework 

 Our analysis builds on the HST analytic framework.  Their model uses the 

following simplifying assumptions. 

 

• Participants arrive in random order at a continuous trading, limit order book 

market to buy or to sell shares of one risky asset.  All orders are of the same size 

(e.g., one round lot).10  Each participant, upon arriving, views the limit order book 

and either enters a limit order or transacts by market order against a counterpart 

limit order.  The quotes establish the market’s best bid and offer and thus the bid-

ask spread. 

 

• Participants are divided into two categories with respect to share valuation.  In 

each category, all participants are identical with regard to their share valuation.  

The relatively bullish participants assign a value of VH, and the relatively bearish 

participants assign a value of VL.   VH is the highest (reservation) price at which 

the bullish participants will buy shares, and VL is the lowest (reservation) price at 

which bearish participants will sell shares.11  The parameter k denotes the 

percentage of the population with the reservation price VH, and (1-k) is the 

percentage with the reservation price VL.  Thus the parameter k represents the 
                                                 
10 A limit order that has been placed on the book remains alive only until the next order arrives, at which 
point the limit order either executes or is cancelled.  As an extension, HST also model the case where a 
limit order can remain on the book for two events. 
 
11 It is implicitly assumed that there are no restrictions or borrowing costs on short selling. 



 8

aggregate mood of the market based on the share valuations of the participants.  

As k goes to either of its extreme values of 0 or 1, the expectations of the market 

become more homogeneous.  

 

• Investors place their orders with respect to their knowledge of VH, VL, and k.  

  

• The value of k is known with certainty by all participants (i.e., k is public 

knowledge). 

 

The HST model allows for information change to occur, and the quotes set in 

their environment adjust for this possibility.  The values of VH, VL, and k are taken to be 

known by a participant at the time when he or she submits an order to the market.  Price 

is determinant in the HST formulation even though k percent of the participants have a 

reservation value of VH and 1-k have a reservation value of VL.  Each participant benefits 

from trading when having traded at a better price than his or her reservation value (VH for 

buyers and VL for sellers).  Just how aggressive participants are with regard to price 

depends on VH, VL, and k.  Equilibrium quotes can be found (with the offer less than VH 

and the bid greater than VL) because participants are willing to risk non-execution for the 

chance of realizing a transaction at a more favorable price. 

 

B. Our Background Environment 

With only a few exceptions, our environment is the same as that of HST.  Most 

importantly, we relax the assumption that k is initially known by all participants and that 

it is a constant.  We take k to be unknown following any news event or any halt in the 

continuous market (such as the overnight close).  With an unobservable, non-constant k, 

we track individual quote-placement decisions as expectations of k change with the 

progression of events (the sequential arrival of new participants at the market).  The 

advantage of this approach is that, with it, we are able to address the issue of price 

discovery directly.  We also allow participants to have adaptive evaluations (specifically, 

as an increasing proportion reveal themselves to have VH valuations, an increasing 

number who initially valued shares at VL change their valuation to VH, and vice versa as 

an increasing proportion reveal themselves to have VL valuations).  Our analysis shows 

that price discovery is a path dependent, multiple equilibria process.  This insight yields 
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important implications concerning price volatility and technical analysis.  Further, our 

formulation builds a bridge between traditional microstructure and behavioral economics.   

We further differ from HST in two relatively inconsequential ways.  First, we take 

VH and VL to be constant parameters throughout a trading session and, in so doing, do not 

allow for an information event to occur.   Second, at each event i, we do not consider an 

individual’s decision of whether to place a limit order (to buy or to sell), or to execute by 

market order against a limit order that has already been posted.  Rather, we simply focus 

on the optimal buy and sell limit orders that would be placed given expectations 

concerning k at each ith event, and then represent price as the mid-point of the bid-ask 

spread.  In the simulation model described in Section III of this paper, we use the HST 

formulas to solve for the optimal values of the bid and offer quotes, given participants’ 

expectation of k. 

 

C. Expectations Formation 

  As noted, the major point of departure for our current analysis from that of HST 

is that we relax the assumption that the true value of k is initially known.  We make the 

more realistic assumption that everybody forms an expectation of k, and we take this 

expectation to be the same for all participants.  As trading progresses with the arrival of 

orders, the common expectation of k changes.    We let k0 denote the initial expectation of 

k and assume that, for all participants, the expectation of k is revised with the succession 

of events indexed by i according to the equation, 

         )1(
0 i

i
i

i kkk λλ
∧

+−=      (1) 

where 

ki is the current expected value of k at i, 

i is an index on the order of events, 

k0 is the initial expected value of k (i.e., before any events have occurred), 
∧

k i is the observed value of k at i, and 

(1-λ ) is a weight that denotes the relative importance in the expectation formation of the 

initial expectation, k0,  0 ≤ λ i ≤  1 and λ i-1 < λ i  

 The variable ki is the expectation of k at event i based on initial expectations (k0) 

and the actual proportion of participants over the previous i-1 events who, by their orders, 
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have revealed themselves to have the valuation VH.  In our model, the factor iλ  can be 

interpreted as the speed of adaptation to current information regarding the mood of the 

market.  The model’s dynamic has another facet, to wit, the value of λ i is increasing with 

the progression of trades, which means that a decreasing weight is given to the initial 

expectation, k0, and an increasing weight is assigned to the value of k that is observed 

based on the orders that have actually been placed.  

Two terms on the right hand side of equation (1) are i dependent: i   and 
∧

k iλ .   

With regard to i , we take the sequence in which participants arrive at the market to be 

exogenously determined and, in equation (1), i  reflects the proportional number of 

buyers and sellers who have actually arrived up to event i.  Note that, in this formulation,  

because the sequence is exogenously determined, the sequence in which buyers and 

sellers arrive has no information content.   The term

∧

k
∧

k

iλ  increasing in i reflects the fact 

that, with the progression of events, a participant gives an increasing weight to the 

observed proportion of buyers, and a decreasing weight to his or her initial expectation, 

k0.   

Equation (1) may be further understood by writing it as  

         )(
00

kkkk iii −=−
∧

λ ; λ i is increasing in i,   (2) 

and contrasting it with the adaptive expectations model that is standard in economics, 

     )(
11 −

∧

−
−=−

iiii kkkk λ ; λ is a constant    (3) 

In both models, in forming expectations, decreasing weight is given to k0 as ki 

evolves.  In the standard economics formulation, weight is also implicitly given to all 

previous observations of i; as discussed above, this is not required in our formulation 

because we take the sequence of order arrival to be exogenous.12  Further, in the standard 

∧

k

                                                 
12 The previous points can be explicitly shown as follows.  Equation (3) can be written as 
   

                   = (1-ik λ )    + 1−ik λ ik
∧

                                                                                            (3a) 
 
            
Since equation (3a) holds for every i, one can derive by using repeated substitution the equivalent 
expression,  
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economics formulation, the speed of adaptation, λ , is a constant, whereas in our 

formulation, the speed of adaptation, 
i
λ , is increasing in i.  That is, we assume that, the 

larger the number of events participants observe, the more importance they place on their 

observations relative to their initial anticipations.  

 

D. Individual Behavior within the Group 

 We have thus far presented the assumptions that set forth our basic analytic 

framework.  Within that framework, individuals’ expectations on k depend on the 

aggregate mood of the market as summarized by the observed variable, i.  As i 

evolves, not only do expectations change but, with adaptive valuations, the underlying 

population distribution of individuals between VH and VL also changes.  We next discuss 

the individual’s decision of whether to be a VH participant or a VL participant when he or 

she comes to the market. 

∧

k
∧

k

The individual’s specific choice of the security’s value, VH or VL, is a function of 

three arguments: the information set (Ω) concerning the state of the world that is common 

for all participants; the assessment of other participants as reflected by the variable, ; 

and initial expectation, k0.  We allow the specific form of the functional relationship to be 

unique to an individual.  More formally, 

ik
∧

 Vji = fj(Ω, , k0 )         (4) ik
∧

where j is an index for an individual; i is, as defined above, the numeric count of events; 

and, for every individual and event, Vji has the value,VH or VL.  Individuals come to the 

market as either buyers (if they assign the value VH), or as sellers if they assign the value 

                                                                                                                                                 

ik ∑
=

1 - i

0 t 
    )1( λ− = (1-λ )i  +0k λ t i  -t     (3b)  

∧

k

∧

k
∧

k
∧

k
∧

k

From (3b), it is clear that, first, ki is not only a function of k0 and i , but also of all the intermediate values, 

1, 2,,…, i-1.   Second, since     λ ∑
=

1 - i

0 t 
    )(1 )1( λ−λ− t  =1 – i           

if all the intermediate values are identical to i , then (3b) can be written as 
∧

k

ik

 

 = (1-λ )i  +[1 – 0k )1( λ−
∧

k
∧

i] i      (3c) 

Thus it is obvious that the weight of k0 is decreasing and that that of k i  is increasing, as in our adaptive 
expectations equation (1). 
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VL).  We assume that there exists a reference point (a critical value) that determines 

whether an individual is a buyer or a seller.  We specify the function fj in equation (4) in 

the following way: 

Vji = fj(Ω, , k0 ) ik
∧ [ ])1( jiLjiH VV δδ −+=        (5) 

where the jiδ  are indicator functions that take the values of zero or one such that 

)(k  if   0                  

)(k  if   1                  

*
i

*
i

Ω<

=

Ω≥

j

ji

j

k

k

δ  

 
and ki is determined by equation (1). 

Note that the critical value, kj* is unique to individual j even with  being 

common knowledge. Whether participant j is a buyer or a seller is determined by 

equation (5).  In other words, j would be a buyer (have a VH valuation) at event i if, based 

upon observing , his or her expectations ki exceed his or her threshold value, , and 

would be a seller otherwise.  The probability of a buyer coming to the market at event i is 

determined by the proportion of participants for whom, at event i,  

Ω

ik 
∧

*
jk

*
ik jk≥

 

E. Group Dynamics 

 With regard to the individual valuations, when approaching the market, each 

individual, j, does so as either a buyer or a seller, depending upon the relationship 

between  and kj* as described by equation (5) that applies at the point of the agent’s 

arrival.  We assume that the arrival sequence of agents is exogenous, that they share the 

same information set ( ), that they have the same initial value of  k which is k0, observe 

the same , and use the same decision rule, to wit the adaptive valuation equation (1).  

Thus, agents differ only with respect to their critical point, kj*.  We assume that kj* is 

uniformly distributed between 0 and 1, and treat the arrival process as equivalent to a 

random sampling of kj* with replacement.  As will be seen below, the uniformity 

assumption is of critical importance for our analysis. 

ik 

Ω

ik 
∧

 The term kj* reflects the confidence of the jth participant in his or her own 

assessment of the fundamental information set (Ω ).  For kj* = 1.0, the jth participant is a 
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bear regardless of the proportion of others who assess shares at VL.  At the other end of 

the spectrum, for kj* = 0.0, the jth participant is a bull regardless of the proportion of 

others who assess shares at VH.  Halfway between, for kj* = 0.5, the jth participant has no 

independent assessment at all but simply goes with the majority. 

 In our structure, the population proportion of buyers (sellers) can be interpreted as 

the probability that the next arriving participant will be a buyer (seller).  With adaptive 

valuations, this probability morphs with the progression of events.  At each ith event, the 

probability that the next participant will be a buyer (seller) depends, as discussed in Sub-

section D above, on the relationship between ki and the distribution of the kj*.  

Concurrently, at each ith event, participant expectations concerning arrival probabilities 

are characterized by ki.  A special case of particular interest exists when the actual 

(population) probability of the next arriving participant being a buyer equals the expected 

probability, ki .  This equality is achieved if and only if the kj* are uniformly distributed 

between 0 and 1, as we have assumed them to be.13  This case is of particular interest 

because of the insights it yields into the price formation process, as will be discussed 

below.  

Note that trending exists in our formulation for all ki not equal to 0.5.   For 

instance, for ki equal to 0.6, the probability that the next arriving participant will be a 

buyer is 0.6 and, if a buyer does arrive, price will rise, ki+1 will be greater than 0.6, and so 

on, implying a trend.  For our case, the trend should not lead to profitable trading 

opportunities because, being apparent to all participants, the quotes will be sufficiently 

wide to nullify the profitability of any trading strategy designed to exploit the trend.  

As noted, the population probability of future events is in harmony with the 

probabilities displayed by past events if the kj* are uniformly distributed over the domain 

0 and 1, as we have assumed them to be.  With harmony between actual and expected 

arrival rates, our price formation process is consistent with a standard Polya process.14   

                                                 
13 If the expected probability rises from some ki, to some ki +∆, the actual probability can maintain equality 
with the expected probability if and only if an identical percentage of the kj* are in the range ki, to ki +∆ for 
any value of ki and ∆.  For this condition to be satisfied, the kj* must be uniformly distributed. 
 
14 Arthur (1994, pp. 36) describes the Polya process as follows.  “Think of an urn of infinite capacity to 
which are added balls of two possible colors – red and white, say.  Starting with one red and one white ball 
in the urn, add a ball each time indefinitely, according to the rule: Choose a ball in the urn at random and 
replace it; if it is red, add a red; if it is white, add a white.  Obviously this process has increments that are 
path-dependent – at any time the probability that the next ball added is red exactly equals the proportion 
red... Polya proved  that... in a scheme like this the proportion of red balls does tend to a limit X, and with 
probability 1.  But X is a random variable uniformly distributed between 0 and 1.” 
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The key feature of the Polya process is that it leads to multiple, path dependent outcomes.  

In our formulation, the outcome of ultimate interest is price.  We turn to the issue of price 

equilibria in the next section.   

 

II. Price Equilibria 

We now use the behavioristic model set forth in the previous section to analyze 

price determination in a market comprised of a sufficiently large number of participants 

who are each seeking to buy or to sell one share of a stock.  We first consider a simple 

environment where all of the participants arrive at the market simultaneously.  We next 

turn to a continuous trading environment where participants do not have a memory (do 

not have prior beliefs about k0), and then to the more behaviorially realistic continuous 

trading environment where participants have a memory (give some weight to their prior 

beliefs about k0). 

 

A.  A Simple Solution 

 A simple, simultaneous solution would apply if all participants were to arrive at 

the market at the same time and trade in a single price call auction.  This special case is of 

interest because, unlike the continuous market solution described below, it leads to a 

unique market clearing value. 

 In this market, any jth participant would wish to buy one share at any price greater 

than VL +kj*(VH – VL), and would wish to sell one share otherwise.  As the price rises in 

the range from VL to VH, it crosses an increasing number of critical price values from 

below and, in so doing, leads to an increasing number of participants being buyers rather 

than sellers (and vice versa as the price falls).  When the participants all meet 

simultaneously in a single price call auction, all that each need reveal to the market is his 

or her critical value of price.15  For the market to clear, we must have an equal number of 

buyers and sellers; accordingly, the clearing price equals the median value of the price 

distribution, VL +   (VH – VL), where  is the median of kj*.  For kj* uniformly 

distributed between 0 and 1 (as we have assumed them to be), the expected value of kj* is 

*
_
k *

_
k

                                                 
15 Specifically, the participant would submit a stop loss limit order to buy at any price equal to or greater 
than the price implied by kj* up to a value of VH, or to sell at any price less than the price implied by kj* 
down to a value of VL.  
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0.5, so the expected equilibrium value would retain the midpoint value, (VH + VL)/2.  

However, because of the inverted buy and sell responses to price, it is an unstable 

equilibrium.16  The instability of the system leads us to consider next the process of price 

formation in a continuous trading environment where, in a sense, the counterpart to 

instability is multiple equilibria. 

 

B. The Continuous Market Without Memory 

 The simple solution shown above is a product of the simultaneity of participant 

interactions and of the way the call auction market poses a question to a participant, “at 

what prices would you be a buyer, and at what prices would you be a seller?”  Both the 

question and the solution change when we move to a continuous trading environment.  In 

the continuous environment, the market presents bid and offer quotes to a participant and 

asks the question, “at these prices, are you a buyer or a seller?”  Given the value of i at 

any ith event in the continuous market, the bid (ask) of a buyer (seller) can be determined 

following HST (2003) and, in contrast with the call auction environment, standard limit 

orders (not stop loss orders) are posted at these values.17  

∧

k

We first analyze equilibria in the continuous market without a memory.  To do so, 

we consider a special case where λ i  = 1 for all i, and where a bid and an ask quote have 

been posted at the start of the trading session with the mid-point of the spread halfway 

between VH and VL.  With this configuration, our formulation conforms exactly to a 

standard Polya process.  We demonstrate this in the following points: 

 

• The standard Polya process starts with one red ball and one white ball in an urn.  

The red ball represents the buyer who has placed the bid, and the white ball 

represents the seller who has placed the offer. 

 

                                                 
16 Ho, Schwartz, and Whitcomb (1985) also showed that, under certain stylized conditions, a call auction 
environment can lead to accentuated price volatility.  Nevertheless, when investors have multiple 
valuations rather than two, and when adaptive valuations are not conditioned solely on price, a call auction 
can actually help to control volatility because it is a price discovery procedure.   
 
17  In the continuous environment, the seller knows exactly how low an offer must be for a buyer to take it 
if a buyer arrives, a buyer knows exactly how high a bid must be for it to be hit by a seller if a seller arrives, 
and neither the buyer nor the seller will give a contra the opportunity to trade at a better price.  In contrast, 
market clearing values are not known ex ante in a call auction and, as noted in footnote 14, participants use 
stop loss limit orders in our call auction environment.  
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• For the standard Polya process, the initial probability of picking a red ball is 0.5.  

Likewise, from equation (1) and given that the k*j are uniformly distributed, the 

probability that the next arriving participant in our process will be a buyer is 0.5.   

 

• For the standard Polya process, the probability of a red ball being picked at any ith 

draw equals the proportion of red balls in the urn as of the ith event.  In our model, 

the probability of the arriving participant being a buyer at any ith event equals the 

proportion of previous participants who have revealed themselves to be buyers 

through the preceding events. 

 

• For the standard Polya process, a single ball that has the same color as the ball 

just drawn is added to the urn at each event as a device to change the probabilities 

for the next draw.  In our model, the valuation of one more participant is revealed 

at each event, and this addition changes  in an identical fashion. ik 
∧

 

• In the standard Polya process, balls are drawn from and added to an urn of infinite 

capacity that increases in size by one ball at each event; in the process, the 

proportion of red balls changes and the probability of drawing a red ball at the 

next event changes identically.  In our process, new participants are drawn from 

an underlying (infinite) population and the number of revealed participants 

increases by one at each event; in the process, invoking the assumption that the 

k*j are uniformly distributed, the probability of the next arriving participant being 

a buyer exactly equals the proportion of buyers observed in the preceding i-1 

events.   

 

• The Polya process requires that the draw of a red ball be matched with the 

addition of a red ball to the urn.  Our process operates equivalently in that the 

arrival of a buyer in the market is matched with a proportionate transformation of 

participants in the underlying population from being sellers to being buyers. 

 

Recognizing that the special case of our formulation is identical to a standard 

Polya process, we can invoke two important results from Polya.    First, each “play of the 
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game” results in its own path, and each path converges on its own equilibrium outcome 

as the number of events becomes sufficiently large.  That is, Polya is a path dependent 

process that displays a multiplicity of possible asymptotic outcomes.  Second, Polya 

(1931) has shown that, for the standard process described above, each path converges on 

a value, let us call it X, and that X is a random variable uniformly distributed in the range 

0 to 1.  In our formulation, the values are the probabilities of the next participant being a 

buyer.  Using HST, these probabilities (k) are readily translated into shares values.  The 

Polya result is that k converges on a value that is uniformly distributed over the range 0 to 

1, while price, which following HST (2003) is a non-linear transformation of k, 

converges on a value that has a U-shaped distribution over the range VL to VH.  A 

numerical illustration that shows the non-linearity of the price, k relationship is presented 

in an appendix to this paper.  

 

C. The Continuous Market With Memory 

In our more general model, λ i  is not one for all i.  The more general case is of 

interest because it reflects the reality of human beings (unlike red and white balls) having 

memories of prior events, that beliefs based on past events affect current expectations, 

and that learning occurs with the progression of events.   As learning progresses, λ i  

increases and approaches one asymptotically. 

A simple, intuitive explanation will show the effect of memory (i.e., λ <1) on the 

values that prices converge on.  The uniform distribution of prices that characterizes the 

simple Polya process (the continuous market without memory) is attributable to the set of 

probabilities attached to the nodes at event (i-1) and to the set of transitional probabilities 

from the nodes at event (i-1) to the nodes at the ith event.18  With a memory, initial 

expectations affect the transitional probabilities and, by extension, the probabilities 
                                                 
18 The uniform distribution can be shown intuitively as follows.  There is one buyer and one seller at the 
start of the trading session.  As of the ith event, let Bi be the total number of participants who will have 
revealed themselves to be buyers, and Si be the total number who have revealed themselves to be sellers.  
Letting p be probability, we then have, for i=1, 
    p(B1=2, S1=1)  =  p(B1=1, S1=2) =  ½  

and, for i=2,   

    p(B2=3, S2=1) = p(B1=2) p(B2=3│B1=2) = (½)(⅔) =  ⅓ 

    p(B2=1, S2=3) = p(S1=2) p( S2=3│S1=2) = (½)(⅔) =  ⅓ 

    p(B2=2, S2=2) = p(B1=2) p( B2=2│B1=2) + p(S2=2, S2=2) = p(S1=2,) p(S2=2│S1=2) = 2(½)(⅓) =  ⅓ 

Generalizing, the distribution at each ith event is uniform in that we have i+1 nodes at each ith event and the 
probability for each is 1/(i+1). 
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attached to the nodes at event (i-1).  Whatever the value of k0, the paths withλ <1 tend to 

revert back to k0 whenever they diverge from it.  This reversion tendency (which is absent 

from pure Polya) causes the distribution of ki to be unimodal in the neighborhood of k0.  

The location of the distribution depends on k0, and the tightness of the distribution around 

its mode depends on the rate at which λ i is increasing in i (the slower the rate, the more 

protracted is the influence of k0 and hence the tighter is the distribution around k0). 

 

III. Simulation Analysis 
 

We next describe the simulations we have used to assess further our model of 

price discovery.  Of particular interest is the sensitivity of the values of k and of price at 

convergence to two key parameters: participants’ initial expectations of k (k0), and the 

duration of memory (I, a controllable parameter that will be explained below).  Also of 

interest are the number of events that each simulation run must extend to in order to 

achieve convergence, and the number of replications that are necessary to obtain the end 

of run distributions for k and for price that our formulation predicts.  An assessment of 

each of these factors has implications for short period (e.g., intra-day) price volatility. 

 

A. Simulation Structure 

The simulation structure is based on the behavioristic model presented in the 

introduction.   There are two types of investors in the simulation: ‘bears’ who evaluate 

shares at VL = $45, and ‘bulls’ who evaluate shares at VH = $55.  These two valuations set 

the minimum and maximum values that quotes and transaction prices can take in the 

simulation.  The two investor types trade with each other.  The VL = $45 participants are 

sellers (they establish the offer prices), and the VH = $55 participants are buyers (they 

establish the bid prices).  The bids and offers are obtained using a simplified version of 

the HST (2003) pricing model that excludes the possibility of information change.  The 

requisite HST variables are the two share valuations ($45 and $55) and k, the proportion 

of participants who are buyers.19  The simplified HST equations are  

B* = λ VL + (1- λ) VH        (6) 
 
A* = µ VH + (1- µ) VL       (7)

where 
                                                 
19 For simplicity, our discussion refers to the buyer side of the market; the seller side is analogous. 
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Each simulation run starts with a bid, an offer, and a participant count of two (one 

buyer and one seller).  The opening bid and offer are set using the simplified HST model, 

the two share valuations, and an initial value of k (ko) which is a controllable parameter.  

The simulation progresses to the first event, then to the second, and so on, with the 

sequential arrival of new participants, each of whom is either a buyer or a seller.  Two 

things happen at each event: (1) a buyer or a seller arrives and the observed proportion of 

buyers is accordingly updated, and (2) based on this revised proportion, new quotes are 

established for event i+1.   

At each event i, ki is the expected probability that a buyer will arrive at event i +1.  

Following equation (1), ki is a weighted combination of ko and the proportion of buyers 

who have arrived during the previous i-1 events. 

In the formulation developed in Section I.E., we note that a special case of 

particular interest exists when the actual probability that the next participant will be a 

buyer equals the expected probability.  We treat this special case in the simulation by 

letting ki be both the actual probability (the probability that we use to determine whether 

the next arrival is a buyer), and participants’ common expectation that the next arrival 

will be a buyer (the probability that we use, along with the evaluations of $45 and $55, to 

set the bid and ask quotes at the ith event).20  Price at the ith event is represented by the 

mid-point of the quotes at the ith event. 

The term ki is given by equation (1).  In equation (1), λi establishes the relative 

importance, at each ith event, of participants’ initial expectations of the proportion of 

buyers (ko) and the proportion of buyers actually observed ( ) through the i-1 events.  

In the simulation, a modified Ogive is used to describe how λi increases with i.21  The 

modification is that λi is assigned an initial value of zero and a maximum value of one 

ik 
∧

                                                 
20 Implicit in this treatment is that participants have adaptive valuations, as discussed in the introduction. 
 
21  The Ogive (the cumulative of a normal distribution) has been widely used to describe the dissemination 
of, e.g., news and communicable diseases.   
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that it attains at some event I.  I and ko are the two controllable parameters in the 

simulation.  A lower value of I reflects participants having a “shorter memory” of events 

preceding the current trading session (i.e., the events upon which their initial expectation, 

ko, is formed).  A case of particular interest is when λi = 1 at I=1. In this case, prior 

memory effects only the location of the initial bid and offer prices and, with ko = 0.5, the 

simulation follows a pure Polya process.  As discussed in Section I, for this case, the 

distribution of end of run values of k is expected to be uniform, and the distribution of 

end of run values of price is expected to be U-shaped. 

 

B. Simulation Results 

Figure 1 shows the price paths for ten simulation runs, each of which comprises 

250 events and has parameter settings of k0 = 0.5 and I = 50.  Because k0 = 0.5, each of 

the ten price paths starts at $50.  The paths generally fan out to higher and lower prices 

with the succession of events, and the “fanning out” extends through roughly the first 80 

events.  After this point, each newly arriving participant has little impact on  and 

hence on price but, nevertheless, minor fluctuations in price persist.  By the 250th event, 

each of the paths appears to have converged on an acceptably stable value, P250.  To be 

cautious, we run our simulations for 800 events and analyze the distributions of k800 and 

P800. 

ik 
∧

Price discovery, as we have modeled it, indeed appears to be a noisy process.  

Supplementary tests not shown here gave essentially confusing results with 200 

replications, noisy pictures with 5,000 replications, and acceptably clear pictures with 

8,000 replications.  Accordingly, we ran 8,000 replications of each simulation to obtain 

our means and standard deviations of k800 and P800.   

The distributions of k800 and P800 are shown in Figures 2 – 4 for three different 

combinations of k0 and I.  Each figure has two frames, one for k800 and the other for P800.  

The range for k800 is 0 to 1, and for P800 is VL to VH.  Each range is broken into 21 equal 

subdivisions (buckets), with 1 indicating the smallest and 21 the largest.  The 21 buckets 

are displayed on the horizontal axis.  The vertical axis shows the frequency (the 

percentage of the replications) with which the values of k800 or of P800 fell in each of the 

21 buckets. 



 21

Figure 2 presents the results for the simulations run with k0 = 0.5 and I = 1 (no 

memory).  This is the pure Polya process.  As expected, the distribution of k800 conforms 

(with some variability) to the uniform, and the distribution of P800 is U-shaped.  Figure 3 

shows the results for k0 = 0.5 and I = 50 (memory).  As expected, with memory, the 

distribution of k800 is unimodal and symmetrical around its modal value at the middle of 

the range, bucket 11.  The price distribution shown in Figure 3B is also centered on 

bucket 11, with the U-shaped pattern seen in Figure 2B shrunk to the three middle 

buckets, 10, 11, and 12.22  Interestingly, the distribution of k800 is tighter around its mode 

than the distribution of P800.23  Figure 4 shows the results for k0 = 0.6 and I = 50 

(memory).  As expected, the distributions of both k800 and P800 are now unimodal, the 

modal values are to the right of the middle of the range (bucket 11), and the distributions 

are skewed to the left.  As in Figure 3, the tails of the P800 distribution are somewhat fatter 

than the tails of the k800 distribution (i.e., while the k800 distribution extends from bucket 5 

– 20, the P800 distribution extends from bucket 2 – 21), which is consistent with the 

transformation from k800 to P800 being non-linear.24   

Table 1 shows the means and normalized standard deviations for k800 and P800 for 

a larger set of simulation runs that includes three values of memory (I = 1, 25, and 50) 

and five values of k0 ranging from 0.2 to 0.8.  The standard deviations of k800 and P800 are 

normalized by dividing each by each variable’s range (1 for k800 and 10 for P800). The 

results for I = 1 (no memory) show that changes in the initial value of k0 have virtually no 

effect on either the mean or standard deviation of either k800 or P800, although the means 

for both do increase slightly as k0 rises from 0.2 to 0.8. The reason for these minimal 

effects is that, because each run always starts with one buyer and one seller, by the next 

event we must have either two buyers and one seller, or one buyer and two sellers.  

Hence, one of these two values takes over for all values of k0 and, with I = 1, k0 itself has 

no further influence.  On the low end, it makes virtually no difference whether we start 

with k0 equal 0.2 or 0.4; on the high end, it makes virtually no difference whether we start 

with k0 equal to 0.6 or 0.8.   
                                                 
22 For larger values of I, the price distribution becomes unimodal and centered on bucket 11. 
 
23 In supplemental tests that are not shown here which were run for values of I substantially less than 50 
(e.g., I = 30) with k0 = 0.5, the price distribution remained centered on bucket 6 but remained U-shape in 
the immediate neighborhood of bucket 6 (i.e., the distribution had local maxima at buckets 5 and 7).  
 
24 Tests run with k0 = 0.4 and I = 50 (not reported here) yielded results that were mirror image to those 
shown in Table 4. 
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A more interesting pattern emerges when memory plays a protracted role.  For I 

equals 25 and 50, the means of both k800 and P800 increase sharply with increases in k0 

(the increases are greater for I = 50).  For instance, for k0 = 0.8, the mean of k800 is .507, 

0.973 and 0.983 for I equal to 1, 25 and 50, respectively, and the mean of P800 is 50.050, 

53.050 and 53.097 for I equal to 1, 25 and 50, respectively.  The standard deviations of 

k800 and of P800 are consistently lower for I = 25 and I = 50 than for I = 1.   

An interesting contrast exists between the normalized standard deviations of k800 

and P800.  For I = 1, all of the normalized standard deviations are roughly 10% higher for 

P800 than for k800.  For I = 25 and I = 50, the normalized standard deviations are roughly 

25% higher for P800 than for k800 when k0 = 0.5 but, for the other four values of k0, the 

normalized standard deviation of k800, is the higher of the two.  This translates into the 

distribution of the standard deviation of k800 with respect to k0 being U-shaped, while the 

distribution of the standard deviation of P800 with respect to k0 is an inverted U.25

The co-existence of the U-shaped pattern for k800 and the inverted U-shaped 

pattern for P800 can be attributed to the following.  The distributions of k800 and P800 are 

both skewed to the left (right) when k0 is greater than (less than) 0.5. Skewness itself 

increases the standard deviations of both variables, and accounts for the distribution of 

the standard deviation of k800 with respect to k0 being U-shaped.  The distribution of P800, 

however, also reflects a second reality: price is a non-linear transformation of k.  It can 

easily be shown that any deviation (in either direction) of k800 from the middle of its 

range is associated with a value of P800 that deviates further from the middle of its range.  

For any value of memory, the distribution of P800 clusters more closely around its mean, 

the further k0 deviates from 0.5; for any value of k0, the distribution of P800 clusters more 

closely around its mean the greater the value of  I.  Now, if the simulation starts in the 

middle of its range (k0 = 0.5 and P0 = $50) and there is no memory (I = 1), P800 can go to 

either of its bounds with equal probability, and it clusters closer to both of its bounds than 

does k800.  That is why, as seen in Figure 2, the distribution of P800 is bi-modal with the 

modes at the extremes (Figure 2B), while the distribution of k800 is essentially uniform 

(Figure 2A).  If memory is protracted, the bi-modality of P800 disappears as k0 deviates in 

either direction from 0.5, and the distribution of P800 accordingly becomes less dispersed.  

                                                 
25 The U-shaped and inverted U-Shaped distributions apply over the range of values displayed in Table 1 
(i.e., k0 equals 0.2 to 0.8).  Results not shown here indicate that the standard deviation of k800 also starts to 
decrease as k0 approaches either of its boundaries (0 or 1).  Clearly, for k0 in the close neighborhood of 
either 0 or 1, the bounds act as absorbing barriers and the variability of both k800 and P800 shrink. 
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Apparently, as k0 deviates in either direction from 0.5, the diminution of the standard 

deviation accentuation that is attributable to price being a non-linear transformation of k 

is stronger than the increase in the standard deviation that is attributable to skewness. 

Accordingly, the distribution of the standard deviation of P800 with respect to k0 is an 

inverted U. 

These simulation results underscore three characteristics of price discovery 

volatility.  First, the process itself is noisy, which explains why we used 800 events and 

8,000 replications to establish the patterns we are looking for.  Second, as I, the duration 

of memory, decreases, the distribution of k800 flattens out around its modal values, and 

the distribution of P800 becomes U-shaped, which means that price discovery gets more 

volatile, as is seen in Table 1.  For instance, for k0 = 0.5, the normalized standard 

deviation for P800 is .171, .177, and 3.23, for I equal to 50, 25, and 1, respectively.  Third, 

for a meaningful value of I (e.g., 25 and 50), the standard deviation of P800 shrinks as k0 is 

placed closer to either of its extremes, 0 or 1, as is seen in Table 1. For instance, for I = 

25, the normalized standard deviation of P800 is .177 for k0 equal to 0.50; it decreases to 

.170 and .126 for k0 equal to 0.40 and 0.20, respectively, and it decreases to .170 and .128 

for k0 equal to 0.6 and 0.8, respectively .  The second and third observations have an 

interesting implication for the relationship between the divergence of expectations and 

price discovery volatility.  To see this, note that, VH and VL given, expectations become 

more divergent as I goes to zero (as memory plays a diminished role) and/or as k0 goes to 

0.5.  It follows that a greater divergence in expectations leads to greater price instability 

in brief intervals of time. 

 

iV. Model Extensions 
 We have analyzed the dynamic behavior of price in a highly stylized divergent 

expectations model that places all participants in one of only two groups: those with a 

high valuation, VH, and those with a low valuation, VL.  Further, the variable k (the 

proportion of participants with the valuation VH) is the sole mechanism through which 

participants revise their valuations in response to the information they receive about the 

valuations of others (as observed k increases, some participants switch their valuations 

from VL to VH and, as observed k decreases, some participants switch their valuations 

from VH to VL).  In this section, we consider the implications of relaxing these 

conditions.  
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A. Multiple Valuations 

 The assumption that all participants fit into two groups with respect to their 

valuations of a security is sufficient to show the existence of the dynamic price behavior 

that can occur in a divergent expectations environment, and dealing with two groups only 

keeps the analysis simple.  However, the “two groups” assumption is limiting: it restricts 

price to the range, VL to VH.  To extend beyond this range, multiple valuations must be 

allowed.  Just as an increase in observed k can result in some bearish participants shifting 

their valuations from VL to VH, we should also allow for the possibility of some bullish 

participants increasing their valuations to a new V’H > VH.  That is, some VH participants, 

upon observing a preponderance of other VH participants, may themselves become more 

bullish and, in so doing, move to the yet higher valuation, V’H.  Similarly, some VL 

participants, upon observing a preponderance of other VL participants, may become more 

bearish and move to the yet lower valuation, V’L. 

 The multiple valuations extension has the pleasing feature of symmetry: bulls and 

bears are both free to increase their valuations upon observing the presence of more 

buyers in the market, or to decrease their valuations upon observing more sellers.  Of 

greater importance, multiple valuations suggest the possibility of wider price swings.  

Further, it opens the possibility of explosive price movements occurring if the response of 

the bulls to a higher k (which must now be interpreted as a vector) is greater than the 

response of the bears, or if the response of the bears to a lower observed k is greater than 

the response of the bulls.  

 

B. Alternative Valuation Signals 

 With regard to information transmission, we have taken the valuation signal at 

any point in a trading session to be k, the observed proportion of buyers and sellers who 

have arrived at the market up to that point.  Because all orders are assumed to be of 

identical size, k is also the proportion of volume that is buy-triggered.   Participants, 

however, may respond to other reflections of a market’s collective assessment.  They 

may, for instance, attribute importance to the length of time that price has stayed above 

(or below) a certain level, to the fact that a stock’s price has “broken out” and set a new 

high (or low), to the movement of other share prices or indexes, or to a myriad of other 

factors. To the extent that participants focus on a valuation signal of longer duration (e.g., 
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greater than a day), price discovery might play out over considerably longer periods than 

our focus on k, an inherently intra-day variable, might suggest.  

 

V. Implications 
We have shown that an information set, Ω, which is public knowledge, translates 

into a unique market clearing value if all participants submit their orders to buy or to sell 

one share of a stock to a call auction that batches all orders together for simultaneous 

execution at a single price.  Our call auction clearing price, however, is an unstable 

equilibrium.  Consequently, it is not surprising that, in a continuous trading environment, 

price discovery is a path dependent, multiple equilibria process.  This insight yields 

several implications.  The first that we consider is the relationship between dynamic price 

discovery and trading volume.26

Trading occurs in our formulation because participants have divergent 

expectations and thus differing trading motives.  In this context, volume is maximized in 

the call auction environment because, in this environment, the clearing price is given by 

VL +  (VH – VL), where   is the median of kj*.  At the median price value, half of the 

participants are buyers, half are sellers, and all of them trade.  This is not the case in the 

continuous market where some participants place limit orders that expire unexecuted.  In 

the context of our model, inaccuracies in price discovery will result in lower execution 

rates and thus lower trading volume.  Further analysis of the relationship between these 

two variables would be desirable, but is outside the scope of the current paper. 

*
_
k *

_
k

It is well documented that short-period (e.g., intra-day) price volatility is 

accentuated vis-à-vis longer-period (e.g., one-week) volatility.27  The accentuation can be 

attributed, in part, to standard microstructure factors such as bid-ask spreads and market 

impact effects.  We suggest that the accentuation may in large part be a reflection of 

dynamic price discovery. 

In our path dependent, multiple equilibria environment, a stable equilibrium price 

is converged on only as a succession of events becomes sufficiently large, and the 

                                                 
26 It has been known in the literature that trading volume is linked to volatility.   See Karpoff (1986) for an 
insightful analysis.   Our formulation suggests that the two variables may be linked in the context of the 
price discovery process as it evolves dynamically in a divergent expectations environment. 
 
27 See e.g., Ozenbas, Schwartz and Wood (2002) for recent evidence and further references.   
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specific value that is converged on is path dependent.  The implication for volatility 

follows, not just from the volatility inherent in any particular path, but also from the price 

variation across the different paths at any ith event.28  The link between this cross-path 

volatility and inter-temporal volatility is established by letting price discovery be a 

repetitive process.  With repetition of the process and in the absence of news, price will 

fluctuate simply because a different path is followed in each repetition.  This differs from 

Handa, Schwartz and Tiwari (2003) where k is a known constant and the bid and ask 

quotes are themselves constant in the absence of news.  In the absence of news, the only 

source of volatility in HST is the bounce between the quotes. 

While our model structure suggests that price discovery accentuates 

predominantly short-period (e.g., intra-day) volatility, our model extensions raise the 

possibility that the impacts are more protracted.  That is, the joint effect of multiple 

divergent expectations and multiple indicators of market sentiment (as discussed in the 

previous section) could result in a process where price keeps rising (falling) for an 

extended period of time to ever higher (lower) levels.  If so, the price discovery process 

that we examine in this paper may be linked to longer run swings that have been 

characterized as bubbles and crashes. 

Our study of the price discovery process sheds a different light on technical 

analysis.  The standard view is that technical analysis simply uses historic price changes 

to forecast future price changes.  A somewhat different interpretation is that technical 

analysis may be used to assess whether or not a current price level is sustainable.  When 

faced with high intra-day volatility, a participant may want to trade at a price that has 

been validated in the sense that a substantial number of other orders have been filled at 

that price.29  The widespread institutional investor practice of VWAP (volume weighted 

average price) trading may be similarly justified.  In this context, technical analysis may 

be viewed as one approach to assessing whether or not a transaction can be validated as a 
                                                 
28  Note, however, that the volatility inherent in any particular path is muted in our formulation because we 

assume that:  participants are divided into only two groups, the proportion is the sole indicator of the 
market’s “mood,” k*j is uniformly distributed across participants, and there is no external information 
change.  A relaxation of any of these assumptions could imply higher volatility along any given path.   

ik 
∧

29 Consider a portfolio manager who would be willing to purchase shares at a price up to $50 but who is 
reluctant buy at $48 because he or she expects that, in the current trading session, price will likely dip to 
$47 in the absence of news.  Buying at $48 and then seeing price quickly go to $47 in the absence of news 
not only means that an opportunity to realize a higher expected return has been missed, but that the buyside 
trader who placed the order will regret his decision.  See Paroush and Venezia (1979) for discussion and 
further references. 
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reasonable purchase or sale.  For instance, persistent trading at a price (or within a trading 

range) tends to validate that price (or trading range).  On the other hand, penetration of a 

support (or a resistance) level may be a signal that participants are indeed more bullish 

(bearish) and, therefore, that price is not apt to revert to a previous trading range.30  

 The divergent expectations, adaptive valuations model suggests that the price 

level converged on following a sufficiently lengthy sequence of events is sensitive to 

early arriving orders, but that it is insensitive to late arriving orders.  This suggests that a 

participant who is in a position to assess the relative sensitivity of a market to a current 

buy/sell imbalance might, as a consequence of path dependency and multiple equilibria, 

be able to profitably game the market.  For instance, a participant might buy (or sell) 

early in the price discovery process (with relatively large market impact), and then 

unwind the position toward the end of the process (with relatively little market impact).  

Such an agent will closely resemble a momentum player.  The difference between a 

momentum player and a manipulator is that the former simply attempts to exploit a trend, 

while the latter seeks to create one.  Neither momentum trading nor manipulative 

behavior could be profitable, however, in the strict form of our model because the bid-ask 

spread could easily be widened so as to prevent it.  

Our dynamic price discovery process conforms to a standard Polya process, and a 

special case of our model fits the standard Polyia process exactly.  The Polyia process 

itself is depicted as a sequence of draws, from an urn, of red and white balls, with the 

proportion of red and white balls (and thus the probability of a red ball or a white ball 

being picked) changing as the sequence of events progresses.  In the price discovery 

application, the red and white balls represent human participants (buyers and sellers); 

consequently, the price discovery process reflects behavioral realities that the 

(mechanical) Polya process does not.  In brief, the interfaces with behavioral issues 

include: the importance of prior expectations (the tenacity with which participants give 

continuing weight to their initial expectations, k0); the signals of other participant 

valuations that an individual may take account of (in our model, the signal is given by 

); and, for a signal, the trigger points that will cause an individual to change his or her 

valuation (in our model, the k*j, which we take to be uniformly distributed across 

ik
∧

                                                 
30 In a frictionless world characterized by instantaneous price discovery, technical analysis would have no 
role to play. 
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individuals).  A more general behavioral issue that requires further investigation concerns 

how individuals cope with enormous and enormously complex information sets, and the 

way in which they make decisions when incapable of measuring input variables with 

precision. 

Our analysis underscores the importance of market structure. We have analyzed 

price discovery as the product of a network.  The scope and quality of a network very 

much depends on the structural environment within which it develops and operates.  

Market structure affects both the generation of information (e.g., quotes, transaction 

prices, and volume) and the dissemination of information (e.g., pre- and post-trade 

transparency, and the consolidation of quotes and prices).  An array of market structure 

issues should be considered in light of the price discovery process, including the rules 

that determine how orders are brought together and translated into trades, the 

consolidation of markets, and market transparency. 

 

VI. Conclusion 
 We have assumed a set of participants in an equity market who have divergent 

expectations and adaptive valuations.  In contrast, standard formulations in financial 

economics (e.g. the capital asset pricing model) assume homogeneous expectations.  The 

homogeneous expectations assumption is not only an extremely important simplification 

for many applications, it is also thought by many to be realistic: information is objective 

and, based on it, all rational agents should form identical expectations. 

Nevertheless, the assumption does not appear to match reality.  Analyst 

recommendations typically differ.  Recent evidence suggests that markets are commonly 

two-sided (i.e., that, for presumably non-liquidity related reasons, some customers are 

seeking to buy shares at about the same time that others are looking to sell).31  Short 

selling is prevalent.  Clearly, information pertaining to the equity markets is enormous in 

both size and complexity, and it is not subject to precise assessment.  Consequently, 

many agents produce what is commonly referred to as “private information” that results 

in their forming divergent expectations. 

The divergent expectations assumption yields useful insight into issues pertaining 

to price discovery.  Our analysis of price formation in a divergent expectations 

                                                 
31 See Sarkar, Schwartz and Wolf (2005). 
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environment builds upon Handa, Schwartz and Tiwari’s (2003) quote setting model 

where k percent of participants have a high valuation (VH), 1-k percent have a low 

valuation (VL), and VH, VL, and k are common knowledge.  We depart in a significant 

manner from HST in that we relax the assumption that k is known.  We take k to be 

revealed as orders are sequentially submitted to a continuous order book market.  In our 

setting, price discovery and k discovery are analogous. 

 Participants in our model have adaptive valuations.  That is, we assume that an 

agent’s assessment of share value (VH or VL) is a function not only of his or her own 

analysis, but also of the assessments of others.  This interaction may be interpreted as 

agents responding to signals of each others’ assessments; it may also reflect participants’ 

desires to “go with the herd,” and to trade at “validated” prices. 

The dynamic price discovery process, like path dependent, multiple equilibria 

processes in general, is sensitive to early events.  This sensitivity suggests the possibility 

of gaming.  That is, a manipulator may realize excess profits by making a purchase or a 

sale early in the discovery process (when prices are relatively responsive to the arrival of 

a buyer or a seller), and then unwinding the position later in the process (when prices are 

less responsive to the arrival of a buyer or a seller).  Gaming in our model, however, can 

easily be defended against by setting bid-ask spreads that are sufficiently wide.  

An important property of the divergent expectations, adaptive valuations model is 

that it treats price discovery as taking place in a network environment characterized by 

path dependency and multiple equilibria.  The perspective obtained by viewing a market 

as this kind of a network may yield fresh insights into a variety of behavioral and market 

structure issues pertaining to how orders are submitted and translated into trades and 

transaction prices.  Both the production of information (through order placement and 

trading) and the dissemination of information (through intermarket linkages, 

consolidation and transparency) determine the efficiency with which prices are 

discovered.  These are complex issues that we leave for future research.
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Figure 1. Typical Price Paths. This figure shows ten simulation price paths that were each traced out 
through 250 events (each event is the arrival of either a buyer whose share valuation is $55 or a seller 
whose share valuation is $45) when the initial expectation of the proportion of participants who are buyers 
(k0) is 0.5, and the influence of k0 extends, with diminishing strength, up to but not beyond the 50th event 
(i.e., participants memory extends to event I = 50).  At each event, bid and offer prices are solved for and 
price is taken to be the mid-point of the bid-ask spread.  As price and the revealed proportion of 
participants who are buyers evolve, participant expectations of the proportion who are buyers change along 
with the proportion who actually are buyers, i.e., participants have adaptive evaluations.  This process 
results in multiple, path dependent equilibria (i.e., by event 200, price has tended to stabilize on 10 different 
values). 
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Figure 2A. Distribution of k800
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Figure 2. Distribution of k800 and P800, with k0 = 0.5 and I = 1 (No Memory).  This figure shows the 
distribution of the proportion of participants who are buyers (buyer value shares at $55 and sellers value 
shares at $45) and the distribution of prices at the 800th event, based on 8,000 replications of the simulation 
when the initial expectation of the proportion of participants who are buyers (k0) is 0.5, with the influence 
of k0 not extending beyond the first event (i.e., participants have no memory, or I = 1).  At the 800th event, 
bid and offer prices are solved for and price is taken to be the mid-point of the bid-ask spread. The range 
for k800 is 0 to 1, and for P800 is $45 to $55.  Each range is broken into 11 equal subdivisions (buckets), with 
1 indicating the smallest and 11 the largest.  The 11 buckets are displayed on the horizontal axis.  The 
vertical axis shows the frequency (the percentage of the replications) with which the values of k800 or of 
P800 fall in each of the eleven buckets.  k0 = 0.5 and I = 1 results in a pure Polya process.  Accordingly, the 
distribution of k800 is expected to be uniform and, with price being a non-linear transformation of k, the 
distribution of  P800 is expected to be U-shaped. 
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Figure 3A. Distribution of k800
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Figure 3B. Distribution of P800

Figure 3. Distribution of k800 and P800, with k0 = 0.5 and I = 50 (Memory).  This figure shows the 
distribution of the proportion of participants who are buyers (buyer value shares at $55 and sellers value 
shares at $45) and the distribution of prices at the 800th event, based on 8,000 replications of the simulation 
when the initial expectation of the proportion of participants who are buyers (k0) is 0.5, but the influence of 
k0 does not extend beyond the 50th event (i.e., participants have memory with I = 50).  At the 800th event, 
bid and offer prices are solved for and price is taken to be the mid-point of the bid-ask spread. The range 
for k800 is 0 to 1, and for P800 is $45 to $55.  Each range is broken into 11 equal subdivisions (buckets), with 
1 indicating the smallest and 11 the largest.  The 11 buckets are displayed on the horizontal axis.  The 
vertical axis shows the frequency (the percentage of the replications) with which the values of k800 or of 
P800 fall in each of the eleven buckets.  With I = 50, the process is not a pure Polya, and the distributions of 
both k800 and P800 are expected to be unimodal; with k0 = 0.5, the mode for both k800 and P800 is expected to 
be at the center of the range, i.e., bucket 6. 
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Figure 4A. Distribution of k800
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Figure 4. Distribution of k800 and P800, with k0 = 0.6 and I = 50 (Memory).  This figure shows the 
distribution of the proportion of participants who are buyers (buyer value shares at $55 and sellers value 
shares at $45) and the distribution of prices at the 800th event, based on 8,000 replications of the simulation 
when the initial expectation of the proportion of participants who are buyers (k0) is 0.6, but the influence of 
k0 does not extend beyond the 50th event (i.e., participants have memory with I = 50).  At the 800th event, 
bid and offer prices are solved for and price is taken to be the mid-point of the bid-ask spread. The range 
for k800 is 0 to 1, and for P800 is $45 to $55.  Each range is broken into 11 equal subdivisions (buckets), with 
1 indicating the smallest and 11 the largest.  The 11 buckets are displayed on the horizontal axis.  The 
vertical axis shows the frequency (the percentage of the replications) with which the values of k800 or of 
P800 fall in each of the eleven buckets.  With I = 50, the process is not a pure Polya, and the distributions of 
both k800 and P800 are expected to be unimodal; with k0 = 0.6, the mode is expected to be on the upper part 
of the range (above bucket 6) and the distributions of k800 and P800 are expected to be skewed to the left. 
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Table I:  Mean and Standard Deviation of the k800 and P800 Distributions.   
 

   
k800

 
P800

   
Mean 

St. Dev.
÷ Range 

 
Mean 

St. Dev. 
÷ Range 

 
I = 1 

 
k0 = 0.2 

 
0.498 

 
0.288 

 
49.979 

 
0.323 

  
k0 = 0.4 

 
0.491 

 
0.290 

 
49.945 

 
0.325 

  
k0 = 0.5 

 
0.501 

 
0.290 

 
50.013 

 
0.323 

  
k0 = 0.6 

 
0.505 

 
0.288 

 
50.019 

 
0.322 

  
k0 = 0.8 

 
0.507 

 
0.289 

 
50.050 

 
0.324 

 
I = 25 

 
k0 = 0.2 

 
0.026 

 
0.247 

 
46.984 

 
0.126 

  
k0 = 0.4 

 
0.271 

 
0.199 

 
48.935 

 
0.170 

  
k0 = 0.5 

 
0.498 

 
0.141 

 
50.017 

 
0.177 

  
k0 = 0.6 

 
0.735 

 
0.204 

 
51.053 

 
0.170 

  
k0 = 0.8 

 
0.973 

 
0.245 

 
53.050 

 
0.128 

 
I = 50 

 
k0 = 0.2 

 
0.018 

 
0.248 

 
46.928 

 
0.118 

 
 

 
k0 = 0.4 

 
0.255 

 
0.206 

 
48.915 

 
0.164 

  
k0 = 0.5 

 
0.498 

 
0.137 

 
49.989 

 
0.171 

  
k0 = 0.6 

 
0.740 

 
0.203 

 
51.094 

 
0.166 

  
k0 = 0.8 

 
0.983 

 
0.247 

 
53.097 

 
0.117 

 
Table I:  Mean and Standard Deviation of the k800 and P800 Distributions.  This figure shows the mean 
and normalized standard deviation of k800 (the proportion at the 800th event of participants who are buyers, 
where buyers value shares at $55 and sellers value shares at $45) and the mean and normalized standard 
deviation of P800 (prices at the 800th event), based on 8,000 replications of the simulation when the initial 
expectation of the proportion of participants who are buyers (k0) has five alternative values ranging from 
0.2 to 0.8, for three different values for memory, I = 1, 25, and 50, where memory refers to the influence of 
k0 on subsequent expectations (I = 1 means that  participants have no memory after the first event).  At the 
800th event, bid and offer prices are solved for and price is taken to be the mid-point of the bid-ask spread.  
The standard deviations of k800 and P800 are normalized by dividing each by each variable’s range (1 for k800 
and 10 for P800). 
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Appendix 
 
The appendix presents a numerical illustration that shows the non-linearity of the price, k 
relationship.  As we have noted in the text, this non-linearity explains two different 
observations.  (1) As displayed in Figure 2, as k discovery and price discovery proceed in 
the pure Polya environment, k converges on values that are uniformly distributed over the 
range 0 to 1, while price converges on values that have a U-shaped distribution over the 
range VH and VL.  (2) For the simulation results shown in Table 1, the distribution of the 
standard deviation of k800 with respect to k0 is U-shaped, while the distribution of the 
standard deviation of P800 with respect to k0 is an inverted U. 
 
In our simulation analysis, price is represented by the mid-point of the bid-ask spread. 
Normalizing VL and VH to 0 and 1 respectively and using the simplified HST (2003) 
equations (6) and (7) in this text gives: 

   k   Price  Price/k 
 .5000  .5000  1.0000 
 .6000  .6316  1.0527 
 .7000  .7532  1.0760 
 .7500  .8077  1.0769 

.8000  .8571  1.0714 
 .9000  .9396  1.0440 
 .9900  .9949  1.0049 
 
The above illustrates that when k is in the middle of its range, price is in the middle of its 
range (i.e., k = P = 0.5); that when 0.5 <k < 1 price is greater than k, and the ratio of price 
to k is at a maximum at k = 0.75; and that as k goes to its bound of 1, so too does price, 
and k ≈ P.  The relationships for k <. 5 are symmetrical. Thus, as k moves linearly from 
0.5 to either of its bounds, price follows a bow-shaped path and the k, price relationship is 
non-linear. 
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